
            

PAPER • OPEN ACCESS

Waves induced by heterogeneity in oscillatory
media
To cite this article: Chunli Huang et al 2020 New J. Phys. 22 083019

 

View the article online for updates and enhancements.

You may also like
How metal films de-wet
substrates—identifying the kinetic
pathways and energetic driving forces
Kevin F McCarty, John C Hamilton, Yu
Sato et al.

-

Two Homologous Quasi-periodic Fast-
mode Propagating Wave Trains Induced
by Two Small-scale Filament Eruptions
Jincheng Wang, Xiaoli Yan, Zhike Xue et
al.

-

Effect of small-world topology on wave
propagation on networks of excitable
elements
T Isele and E Schöll

-

This content was downloaded from IP address 219.224.22.132 on 25/02/2023 at 12:05

https://doi.org/10.1088/1367-2630/aba022
/article/10.1088/1367-2630/11/4/043001
/article/10.1088/1367-2630/11/4/043001
/article/10.1088/1367-2630/11/4/043001
/article/10.3847/2041-8213/ac8b79
/article/10.3847/2041-8213/ac8b79
/article/10.3847/2041-8213/ac8b79
/article/10.1088/1367-2630/17/2/023058
/article/10.1088/1367-2630/17/2/023058
/article/10.1088/1367-2630/17/2/023058


New J. Phys. 22 (2020) 083019 https://doi.org/10.1088/1367-2630/aba022

OPEN ACCESS

RECEIVED

23 February 2020

REVISED

4 June 2020

ACCEPTED FOR PUBLICATION

25 June 2020

PUBLISHED

10 August 2020

Original content from
this work may be used
under the terms of the
Creative Commons
Attribution 4.0 licence.

Any further distribution
of this work must
maintain attribution to
the author(s) and the
title of the work, journal
citation and DOI.

PAPER

Waves induced by heterogeneity in oscillatory media

Chunli Huang1, Xiaoqing Huang2, Xiaoming Zhang3 and Xiaohua Cui1

1 School of Systems Science, Beijing Normal University, Beijing, 100875, People’s Republic of China
2 School of Biomedical Engineering, Capital Medical University, Beijing, 100069, People’s Republic of China
3 College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, People’s Republic of China

E-mail: xhcui@bnu.edu.cn

Keywords: nonlinear wave, pattern, complex Ginzburg–Landau equation, heterogeneity

Supplementary material for this article is available online

Abstract
Various behaviours of nonlinear wave propagation and competition have been discussed and
investigated extensively and meticulously, especially when the media are homogeneous. However,
corresponding studies in heterogeneous media are much scarcer. In this paper, spontaneously
generated waves from one-dimensional heterogeneous oscillatory media, modelled by complex
Ginzburg–Landau equations with spatially varied controlling parameters, are investigated. An
unexpected homogeneous wave train clearly emerges under certain conditions. With the theory of
interface-selected waves, we can theoretically predict the frequencies and wavenumbers under
several conditions. This kind of wave train can be found in a wide region of parameter space.
These phenomena are robust when parameters are varied nonlinearly or linearly with fluctuation.
Moreover, this kind of homogeneous wave plays an important role in wave competition and affects
wave propagation in spatially heterogeneous nonlinear systems, which will bring new applications
of heterogeneity and provide new ideas for wave control.

1. Introduction

A wide range of wave patterns can be sustained in spatially extended active systems, including physical,
chemical [1, 2] and biological systems [3–6]. We are familiar with the behaviour of waves in most
homogeneous systems, such as the propagation or competition of waves. Moreover, some novel behaviour
around interfaces has been well predicted analytically and observed clearly, such as wave reflection and
refraction in linear optics, negative refraction and interface-selected waves in nonlinear oscillatory systems
[7–9]. The behaviours of waves has been explored and determined step by step. However, when the media
become heterogeneous, the behaviour of waves becomes more complex and diverse, and little is known.

Spatial heterogeneity is one of the important factors that can strongly affect the selection of wave
patterns and has attracted great interest during recent decades [10–19]. For example, it has been found that
in excitable and oscillatory systems with low heterogeneity, coherent wave patterns were generated [11, 12].
Heterogeneity also can select new wave patterns [7, 15, 16]. Currently, the wave behaviour around the
interface in inhomogeneous systems composed of two homogeneous systems has attracted considerable
attention in nonlinear systems. Both planar wave and target wave patterns can be selected by the interface
[12]. However, the knowledge of wave patterns selected in heterogeneous systems is still insufficient, so it is
worth further investigation. For example, what kinds of pattern formations can be deduced from the
heterogeneity, and will the kinds of heterogeneity (partial heterogeneity, spatial heterogeneity with
parameters changing regularly or randomly, and so on) affect the pattern formation?

Intuitively, interface-selected waves (ISW) can be generated spontaneously from the interface of an
inhomogeneous system constructed by one normal wave medium and one anti-wave medium, and the ISW
is the result of interplay between two different media at the interface [7]. If one system is overall
heterogenous in space, what kind of dynamical behaviour will emerge? In this paper, we study the selection
of wave patterns in one-dimensional (1D) heterogeneous systems modelled by the complex
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Figure 1. (a) Parameter sets of a 1D heterogenous CGLE system. (b) Schematic figure of our model. (α1,β1) and (α2,β2) are the
parameter sets of region A and region C, respectively. The parameter set of position x is set as (α(x),β(x)),
α(x) = α1 +

α2−α1
LB

· (x − LA), β(x) = β1 +
β2−β1

LB
· (x − LA).

Ginzburg–Landau equation (CGLE). Spatially varied control parameters are selected to form a spatial
heterogeneity. Surprisingly, a homogeneous pattern has been observed under different settings of spatial
heterogeneity. The understanding and explanation of such interesting phenomena for heterogeneous
systems are expected to extend to more complicated practical heterogeneous oscillatory systems and help us
understand heterogeneity, which is of great significance in practice.

In the next section, a heterogeneous one-dimensional CGLE model is described in detail with dispersion
relation curves for different media referring to the setting of the parameters. The variations of the
parameters in space could be linear or nonlinear. The resultant wave patterns generated spontaneously in
these systems are shown in section 3. The unexpected phenomena draw us to analyse the physical
explanation of wave generation in section 4 and the robustness of ISWs in section 5. In the last section, we
present an overall discussion and conclusion about the generation rules of wave patterns in these types of
heterogeneous nonlinear systems.

2. Model

We consider a 1D oscillatory system modelled by the CGLE:

∂A(x, t)

∂t
= A(x, t) − (1 + iα(x))|A(x, t)|2A(x, t) + (1 + iβ(x))∇2A(x, t) (1)

with the complex variable A(x, t) being the order parameter at a Hopf bifurcation [20–22]. For a general
reaction–diffusion system, the dynamics of oscillations with the amplitude and phase are scaled to one
complex order parameter A(x, t). α(x) and β(x) are real parameters, representing the nonlinear frequency
shift and the dissipative coefficient, respectively. ∇2 = ∂2/∂x2 denotes the 1D Laplace operator.

An inherent oscillation with natural frequency ω0 = α can automatically survive in a homogeneous
CGLE system that is well known, and the inherent oscillations will compete with each other if the system is
composed of several homogeneous CGLE systems around the interface and come to a final winner [21, 22].

A homogeneous CGLE medium can have plane wave solutions, and the frequency and wave number of
wave trains satisfy the dispersion relation [21, 23]:

ω = ω0 + f1k2 = α+ (β − α)k2 (2)

where f1 = β − α is the slope of the dispersion relation curve in the ω − k2 plane, and ω0 = α is the actual
frequency of the homogeneous no-flux system. The characteristic of propagating waves is determined by the
dispersion relation curve and the frequency of the wave train (ω) [23]:

NW : ωf1 = ω(β − α) > 0 (3a)

AW : ωf1 = ω(β − α) < 0 (3b)

Here, we study a 1D CGLE system and consider a spatial heterogenous system, as shown in figure 1. The
parameters in region A are (α1,β1), in region C are (α2,β2). The parameters (α(x),β(x)) in region B are
varied via position x.

α(x) = α1 + (α2 − α1) ∗ (x − LA)n/Ln
B (4a)

β(x) = β1 + (β2 − β1) ∗ (x − LA)n/Ln
B (4b)
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Figure 2. A 1D CGLE system with heterogenous parameter sets is investigated. All following numerical simulations are made
with space step dx = 1.0, time step dt = 0.005. No-flux boundary condition is applied, and randomly chosen initial conditions
are used unless specified otherwise. Contour patterns of Re A(x, t) are plotted here. α1 = −0.15,β1 = 2.0;α2 = 0.25,
β2 = −1.4. (a) LA = LC = 300, LB = 0. (b) LA = 0, LB = LC = 300. (c) LA = LB = LC = 200. The spatiotemporal patterns are
the same as time goes on.

Figure 3. Contour patterns of Re A(x, t) are plotted here. (a) α1 = −0.15,β1 = 2.0;α2 = 0.25,β2 = −1.4. Homogeneous
planar waves are observed, and the heterogeneity is transparent to this wave train. (b) α1 = 0.15,β1 = 2.0;α2 = 0.25,β2 = 1.4.
The heterogeneous system supports waves with the same frequency but different wavenumbers, manifesting heterogeneity.

Since the parameters α(x) and β(x) change via position x, we have different inherent oscillations at
different spatial positions. By changing the parameter set of (α,β) properly, it might become possible to
observe the detailed behaviour occurring exactly on these inherent oscillations and reveal the dynamic
behaviour induced by the spatial heterogeneity.

The CGLE system here is integrated using the explicit Euler method and standard three-point
approximation for the Laplace operator. Besides, no-flux boundary condition is applied, and randomly
chosen initial conditions are used. Throughout the paper we simulate equation (1) with space step
dx = 1.0, and time step dt = 0.005. We have confirmed the validity of the numerical method by using the
Runge–Kutta method and smaller space step (e.g., dx = 0.5), and got results similar to those presented in
the following figures without visible errors.

3. Pattern formation phenomena observed in heterogeneous CGLE systems

In order to know how heterogeneity significantly affects the inherent dynamics when no external pacing is
involved. We plot figure 2 to illustrate the transition between two-homogeneous coupled media and a pure
heterogeneous media. Regular wave patterns will be observed as time goes on. The results are almost the
same, so here we focus on the pure heterogeneous system (i.e., LA = LC = 0).

We first study the parameter sets (α(x) and β(x)) by changing linearly via position x; i.e., n = 1 in
equation (4). The beginning of the heterogeneous system is set as (α1,β1), and then α increases linearly
while β decreases. At the end of the system, the parameters are (α2,β2). In figure 3, we used the same
parameter sets as above and set random initial conditions to study the system evolution. We found different
features under asymptotic states. We show the most significant observation in figure 3(a). Homogeneous
planar waves with a constant velocity are observed along with a planar wave generated by pacing in a
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Figure 4. Dispersion-relation curves of ω − k2 plotted based on equation (7a), for the parameter sets of figures 3(a) and (b),
respectively. Each curve denotes a dispersion-relation of a (α(x),β(x)). (a) These curves overlap at the same point
(0.105, 0.0763), which is exactly the wave frequency and wavenumber of the final wave pattern. (b) These curves overlap at the
same point (0.143, 0.414). However, this is not consistent with the wave pattern obtained in figure 3(b).

homogeneous medium. The phenomenon shown in figure 3(a) is surprising. With a totally spatial
heterogeneous medium, we intuitively think that the waves may have the same frequency but must have
different wave numbers. In figure 3(b), where we observe synchronistic oscillations in the medium with
different wave numbers, the spatial heterogeneity is clearly manifested. In addition, in figure 3(a), waves
propagate in the spatially heterogeneous media as if they are propagating in a homogeneous medium.
Moreover, the generated running waves are stable for different initial perturbations. This phenomenon is
impossible in linear systems and is still unusual in nonlinear systems.

4. Explanation of regular wave patterns

It is interesting that we can accurately predict the frequency and wavenumber of this kind of homogeneous
wave under certain parameter conditions. For the case of figure 3(a), we can determine that the frequencies
and wavenumbers at different positions have the same values:

ω(x) = ω0; k(x) = k0; |F(x)| = A0; 1 � x � LB (5)

and a single-domain planar wave solution [7, 20, 21] can be written as follows:

A(x, t) = F(x) exp(i(k(x)x − w(x)t)), 1 � x � LB. (6)

Inserting equations (5) into (6), we obtain a unique set of solutions ω(x), k(x).

ω(x) = α(x) + (β(x) − α(x)) ∗ k(x)2 (7a)

k(x)2 = k2
0 = (α1 − α2)/(β2 − β1 − α2 + α1) (7b)

ω(x) = ω0 = (α1β2 − α2β1)/(β2 − β1 − α2 + α1) (7c)

where (α1,β1) and (α2,β2) are the parameter sets at the beginning and ending of the heterogeneous system,
respectively. In figure 4(a), we specify the ω(x) − k(x) relations in ω − k2 planes [the parameters are taken
from figure 3(a)]. Each curve denotes a dispersion-relation of a parameter set (α,β). The
dispersion-relation curves are plotted for (α(x),β(x)) with x = 1, 20, 40, 60, . . . , 200. The figure clearly
shows that the curves overlap at the same point, noted as (ω0, k2

0). We compare the numerical results with
this point (ω0, k2

0) and find the two results coincide with each other. In other words, the inherent
oscillations of each point compete and evolute. Finally, the wave train with wave frequency ω0 and
wavenumber k0 survives in the heterogeneous system. It is similar to the results we found in the
two-medium CGLE system. When the dispersion-relation curves of the two homogeneous media, which
compose a two-medium system, intersect at one point (ω0, k2

0), and this (ω0, k2
0) is a normal wave train in

one medium with an anti-wave train on the other side, an ISW train can form from the interface and spread
to the whole two-medium system [7]. For simplicity, this kind of homogeneous wave observed here is also
called ISW, as (ω0, k2

0) is a normal wave train in one side while an anti-wave train on the other side.
In figure 4(b), we plot the dispersion-relation curves of parameters taken from figure 3(b). The

dispersion-relation curves intersect at ω0
′ = 0.414, k′20 = 0.143, which indicates the heterogeneous media can
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Figure 5. (a) Distributions of different types of waves in (α1,α2) parameter planes for a (β1,β2) set. We fix the
β1 = −1.4,β2 = 1.4, do simulation in the heterogeneous system, and looking for the region where ISW exists in the parameter
space of α1 − α2. Black disks and red dots represent the boundaries of ISW region identified by direct numerical simulations of
our heterogeneous system. In ‘No ISW’ region, there is no ISW as k2 < 0 (equation (7b)). In ‘unstable’ region, the patterns are
not regular in space. (b)–(d) Contour patterns of Re A(x, t) are plotted. (b) α1 = −0.5,α2 = 0.2. No regular waves can be
observed. (c) α1 = 0.15,α2 = −0.1. Homogeneous waves in spatial-temporal processes are observed. (d) α1 = 1.0,α2 = −0.8.
The waves are not regular in space. Regular waves can survive in some part of the system as their controlling parameters are
changing step by step, and the natural oscillations can support one frequency in some part.

Figure 6. The robustness of ISWs is considered here. Spatiotemporal patterns of the real part of A(x, t), Re A(x, t), of a 1D
heterogeneous CGLE system. The parameter set (α1,β1;α2,β2) is taken from figure 3(a). α(x),β(x) are changing nonlinearly by
equation (4); n = 2 in (a) and n = 3 in (b). The spatial heterogeneity still seems transparent in the pattern formation, and both
wave frequencies are 0.0763, which is the same result as the parameters with n = 1 in figure 3(a).

support a homogenous wave train with that (ω0, k0). However, the result we show in figure 3(b) is not
consistent with this, and the simulation shows the frequency of waves is 0.243, which is close to α2. If we set
an external wave source with this (ω0

′ , k0
′), a corresponding homogenous wave train will absolutely form in

the heterogeneous media. Without an external wave source, this wave cannot be generated as there is no
inherent source either. The final wave train is generated by the inherent oscillation α2 = 0.25 as the
(α(x),β(x)) sets here are all normal waves, and α2 is the largest [23, 24].

To illustrate the conditions under which this kind of homogeneous wave train (ISWs) can exist, we show
an example in figure 5(a). We fix the β1 = −1.4,β2 = 1.4, do simulation in the heterogeneous system, and

5
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Figure 7. The robustness of ISWs is considered here. The parameter set (α1,β1;α2,β2) is taken from figure 3(a). α(x),β(x) are
changing linearly with fluctuation by equation (8). (a) The parameters α(x) and β(x) are shown here. (b) Spatiotemporal
patterns of the real part of A(x, y), Re A(x, y), of a 1D heterogeneous CGLE system. (c) The frequencies of each x are collected and
shown here.

looking for the region where ISW exists in the parameter space of α1 − α2. In figure 5(a), ISW in the region
enclosed by disks, which is called ISW region. The lines with k2

0 = 0 and α1 = α2 are the theoretical
boundaries of ISW predicted by equation (7). In the ‘No ISW’ region, there are no ISWs due to violations
of conditions of k2

0 < 0. Contour pattern of this condition is shown in figure 5(b). There are no regular
waves in spatio-temporal processes. The contour pattern of ISW region is shown in figure 5(c), regular
waves are observed. In the ‘Unstable’ region, ISWs cannot survive due to the instability (there is a limit of
frequency in each homogeneous media. Beyond the limitation, there are no stable waves). Contour pattern
of Re A(x, t) is shown in figure 5(d) on this condition. The ‘ISW’ region is similar to that of the
two-medium system but is slightly larger. This result indicates that the global heterogeneity will broaden the
region of ISWs and will benefit the generation of ISWs.

5. The robustness of ISWs

The spatial parameter of media changing linearly is a strict requirement that may not be easy to obtain.
Here, we make the parameter sets go nonlinearly and check the existence of this kind of ISW. α(x), β(x) are
set in equation (4) by n = 2, or 3. The asymptotic patterns are shown in figures 6(a) and (b). The spatial
heterogeneity still seems transparent in pattern formation, and both wave frequencies are 0.0763, which is
the same as the parameters with n = 1 in figure 3(a).

We add fluctuation to the system to check the robustness of the ISWs. The parameters of the system are
set as follows.

α(x)′ = α(x) + f ∗ sin(x) (8a)

β(x)′ = β(x) + f ∗ cos(x). (8b)

The parameters α and β change via position x as shown in figure 7(a), and the lines of the parameter are
no longer smooth. Here, the strength of the fluctuations is set as f = 0.1. The pattern of the systems is
shown in figure 7(b). The frequencies of each point are all 0.0781, slightly larger than that without
fluctuation, shown in figure 7(c). This result clearly shows the same properties in time. The pattern can
maintain regularity in spatial space if the strength f decreases.

Together with the example of figures 6 and 7, we can deduce that the generation of a wave train with the
same frequencies by spatial heterogeneity is not difficult, as the parameter sets are not limited to change
linearly. The wave frequencies and wavenumbers can be theoretically predicted when parameters change
regularly (as n = 1, 2, or 3), but not for conditions with fluctuation.

6. Conclusion

In conclusion, heterogeneity is a common property that can emerge in real experimental oscillatory media.
Thus, the competitions between different waves and pattern formations in heterogenous systems are
important and significant in practical applications. The selection of wave patterns in a global 1D
heterogeneous CGLE system is studied and discussed in this paper.

We have studied system evolution under different parameter sets. The parameter sets have been set as
changing linearly regularly, nonlinearly regularly, and linearly with fluctuations. We have found that it is
easy to obtain a wave train with the same frequencies. First, when the parameters of each point can intersect
at one point on the ω − k2 plane, and the frequencies of this point are NW on one side but AW in the other
side, ISW can form. Second, the frequencies and wavenumbers of ISW can be explained perfectly. Third, the
region of ISW under global heterogeneity has been shown in figure 5(a) and are slightly larger than that in
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the two-submedium system. Finally, the generation of ISWs is robust under fluctuation as shown in
figure 7.

The main conclusion as follows: (i) spatial heterogeneity in oscillatory media with random initial
conditions can induce homogeneous planar wave trains. (ii) This kind of homogeneous wave train has
similar properties to the interface-selected waves found in a two-medium system. The frequency and
wavenumber can be precisely predicted under certain conditions. (iii) This kind of wave train can be found
in a wide region in parameter space. (iv) This kind of wave train is robust with parameters varied
nonlinearly or varied linearly with fluctuation.

The investigations in this paper are found in 1D systems with global spatially varied controlling
parameters; however, regular patterns can also be observed generally in high-dimensional systems. Wave
competitions and pattern formations in 2D oscillatory systems are of much more importance, as the types
of waves become much richer, including spirals and anti-spirals, which can be self-sustained. We emphasize
here that the results obtained are robust for heterogeneous oscillatory media without external pacing. The
studies presented here are just the tip of the iceberg, and many interesting characteristic features and
available applications of heterogeneous systems still require extensive exploration and explanation.

One of the expected developments of the present topic is experimental realization. The discussion in
CGLE is not convenient for experimentalists directly. On the contrary, the analysis on reaction–diffusion
systems may suggest the possible conditions of actual parameters, and give some easy guidance to
experiments. The CGLE is deduced from reaction–diffusion system, and can be revised to real
reaction–diffusion equation, like Brusselator equation [25]. And the negative refraction which is observed
by simulation in a two-medium CGLE system [9], have been observed in the chlorite-iodidemalonic acid
(CIMA) reaction system [8]. We discuss the global heterogeneous setting here can broaden the generating
conditions of interface-selected waves. The global heterogeneous setting in real systems can be different
light intensity in BZ reaction or different PVA concentrations in CIMA [8], and so on. We believe the
phenomena found here can provide new insight in understanding the characteristics of nonlinear waves.
Further investigation in this direction may greatly broaden our knowledge of pattern formations,
competitions, and control of oscillatory waves.
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