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A B S T R A C T

Identifying spiral wave tips of spatiotemporal dynamical systems from time series represents a significant
challenge for understanding and controlling complex dynamics. Many previous methods for calculating tips
relied on phase analysis, and they inevitably needed to set a phase origin and required multiple time slices
for phase calculation. Reservoir computing, a simplified recurrent neural network paradigm, has spurred
many investigations in several fields to capture and predict the features of complex, nonlinear dynamics.
Based on the superior performance of reservoir computing, we investigated its application in analyzing spiral
wave tips in reaction–diffusion systems. In this paper, we employ reservoir computing to identify spiral
wave tips in some simple cases (spiral waves modeled by CGLE with one or two tips) and demonstrated
that our model could accurately identify tips using only one time slice. Furthermore, we confirmed that the
model maintained high accuracy in identifying tips of moving one-tip spiral waves in other systems (Bär,
FHN). Moreover, we analyzed complex cases (evolving spiral waves and turbulence), with results indicating
effective model performance. Ultimately, we demonstrated reservoir computing’s robustness, noting its superior
performance over conventional algorithms when handling data contaminated with noise from the sampling
process. In summary, reservoir computing exhibits low computational complexity, requires minimal data and
fewer constraints, and achieves high accuracy. This approach offers novel prospects for identifying topological
structures in practical applications, such as monitoring and controlling spiral wave tips in cardiac illnesses.
1. Introduction

Spiral waves, whose mechanism is mainly caused by defects in space
topological structure [1], are special and common spatial patterns that
exist in many complex systems. Recently, research on spiral waves has
gained significant attention, including the control of spiral waves [2,3],
pinned spiral waves [4], tissue defects [1,5], spiral waves tip trajecto-
ries and their relevant stability or instability [6,7]. Among these topics,
phase singularity (PS i.e. tips of spiral wave) identification has emerged
as a crucial research area concerning spiral waves in the heart. Spiral
waves can cause vascular arrhythmias, including ventricular tachy-
cardia (VT) and ventricular fibrillation (VF), which are the primary
causes of sudden cardiac death (SCD) each year [8,9]. Most arrhythmias
originate from reentry, focal excitations, or a mixture of both [10,11].
The success rate of eliminating abnormal waves with stereotactic radio-
frequency ablation [12,13] can be significantly improved by locating
tip sites and identifying the types of abnormal waves. In practical
experiments, temporal data from each spatial node are readily and
conveniently acquired, and the utilization of spatiotemporal data for
identifying spiral wave tips constitutes a prominent research focus.
Several approaches have been investigated for identifying spiral wave
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tips, including line integral method [14], convolution method [15],
topological charge-density method [16], Jacobian determinant method
(JM) [17], etc. However, a common issue with current methods for
computing spiral wave tips is the lag time involved. This issue arises
because data from a subsequent time interval are essential for calcu-
lating the tip position at a given moment. Specifically, data recorded
up to time 𝑡 + 𝛥𝑡 are required for calculating the tip location at time 𝑡.
Tip calculations are highly sensitive to the length of the required data,
which is not standardized. To overcome this limitation, we propose
adopting machine learning to accurately identify spatial tips based on
one time slice.

In the recent past, the utilization of artificial intelligence in spi-
ral wave research has been progressively intensifying [18,19]. For
instance, researchers have employed deep neural network (UNet) ap-
proaches to determine the positions of spiral wave tips. Nevertheless,
such systems also have a lag issue, poor accuracy in certain situations,
and extremely high computing costs [19]. Concerning technique se-
lection, reservoir computing (RC) [20,21] has received widespread re-
search interest attributed to its notable accuracy and efficiency advan-
tages over other traditional methods in nonlinear science. For example,
vailable online 9 February 2024
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RC has been widely exploited to predict the evolution processes of non-
linear systems, as exemplified by the classic parallel RC method, suc-
cessfully predicting up to 5–6 Lyapunov times in large-scale spatiotem-
poral chaotic systems [22]. Subsequently, a hybrid forecasting ap-
proach extended this prediction capability to 12 Lyapunov times [23].
Moreover, some studies have implemented special equations to ‘‘up-
date’’ the input to obtain effective long-term predictions [24]. Recent
research has focused on the dynamical properties of nonlinear systems,
for instance, using the time series to determine a dynamical system’s
Lyapunov exponents [25,26], crucial transitions [27,28], and sensing
phase coherence [29]. Additionally, RC has been applied to identify
chaotic signals [30,31], perform partial variable inference [32,33], syn-
chronization [34,35], and dynamically observe excitable systems [36].
In light of this, we have opted to utilize reservoir computing for tip
identification, and preliminary test results affirm its feasibility.

The paper is divided into 4 sections. Section 2 presents the pro-
posed RC model, the related data processing approach and the error
calculation algorithm. Section 3 investigates the availability of RC for
identifying tips in simple spiral wave modes, explores the applicability
and challenges encountered when examining evolving spiral waves and
turbulence modes, and presents the influence of Gaussian white noise
on the identification process. Section 4 draws the main conclusions.

2. Model

We modify the original RC structure [20,21] to identify the tip
positions in nonlinear systems. The RC model is still composed of three
parts: an I/R layer (sequence-to-reservoir), a reservoir (𝐑(𝑡)), and a
R/O layer (reservoir-to-point). The I/R layer is mainly used to map
a lower-dimensional input vector into a higher-dimensional reservoir
network. The input data is the distribution matrix of system variables at
a certain time. The matrix 𝐖𝑖𝑛 used in the mapping process is randomly
generated from a uniform distribution [−1, 1] with a dimension of
𝐷𝑟 × (𝐷𝑖𝑛 + 1). Once the input matrix 𝐖𝑖𝑛 is generated, it remains fixed
throughout the subsequent locating phase. Eq. (1) updates the states of
the nodes in the reservoir network:

𝐫(𝑡 + 𝛥𝑡) = (1 − 𝛼)𝐫(𝑡) + 𝛼 tanh(𝐀𝐫(𝑡) +𝐖𝑖𝑛(𝐕𝑆 (𝑡 + 𝛥𝑡) + 𝜉)), (1)

where 𝐖𝑖𝑛 is the weight matrix between the input layer and the
reservoir layer. The reservoir layer’s weighted adjacency matrix 𝐀 is
constructed from a sparse random ER matrix with a dimension of
𝐷𝑟 ×𝐷𝑟, where the average degree of the network is 𝐷 and the fraction
of nonzero matrix members is 𝐷∕𝑁 . Wherein, nonzero element values
are also randomly drawn from the interval [−1, 1]. The matrix 𝐀 is
rescaled by its spectral radius 𝜌, and once selected, we keep it fixed. The
reservoir network node states are represented by 𝐫(𝑡), where 𝐫 ∈ R𝐷𝑟 ,
we set the initial conditions as 0 in the training phase. We substitute it
into Eq. (1) to calculate 𝐫(𝑡+1) for the next moment, then, the obtained
𝐫(𝑡 + 1) is substituted into Eq. (1) to obtain the 𝐫(𝑡 + 2), and we repeat
the above processes iteratively. We discard the top 10 sets of data due
to their significant fluctuations in calculating the output weight 𝐖𝑜𝑢𝑡.
In the locating phase, we input the last 𝐫(𝑡) value in the training phase
to run the reservoir for identifying spiral wave tips. The input vector is
represented by the 𝐷𝑖𝑛-dimensional 𝐕𝑆 (𝑡), and the hyperbolic tangent
function 𝐭𝐚𝐧𝐡 primarily modifies the input in a nonlinear way. During
the calculation process, each node in the reservoir layer is updated at
a rate of 𝛼, and 𝜉 is the bias parameter. Unlike the classic RC structure,
we modify the data structure from the reservoir to the output layer. For
the R/O layer(reservoir-to-point), we select the output data as a zero–
one matrix with the same dimension as the input data. Specifically,
we choose the Jacobian determinant method (JM) to calculate the tip
positions, set the tip points to 1, and set the remaining points to 0 to
generate a position matrix, which is used as the target values 𝐕𝐿(𝑡).

In the training phase, the primary goal is to obtain the weight
matrix 𝐖𝑜𝑢𝑡 using the 𝑇1 data (𝑇1 is the length of the training data),
2

here the dimension of 𝐖𝑜𝑢𝑡 is 𝐷𝑜𝑢𝑡 × (𝐷𝑜𝑢𝑡 +𝐷𝑟 + 1). Therefore, all s
arameters that are based on matrices 𝐀 and 𝐖𝑖𝑛 are hyperparame-
ers [37]. Some methods transfer nonlinearity from the reservoir to
he output layer [38], in this paper, the output layer is selected to
ave a linear function to a matrix 𝐑(𝑡). Here, we construct the matrix
(𝑡) = [𝐫(𝑡);𝐕𝑆 (𝑡); 𝜉] made up of the input 𝐕𝑆 (𝑡), the reservoir states 𝐫(𝑡)
nd the bias parameter 𝜉. The output 𝐕𝐿(𝑡) at time 𝑡 is described by

𝐕𝐿(𝑡) = 𝐖𝑜𝑢𝑡𝐑(𝑡). (2)

he system is open during the training phase, and the output 𝐕𝐿(𝑡) is
btained from the target values, which are calculated by JM. Here, we
se ridge regression [39] to obtain the output weight 𝐖𝑜𝑢𝑡 by matching
he output values to the target values in a least-square sense. To opti-
ize the following hyperparameters: learning rate 𝛼, bias parameter

, training length 𝑇1, and number of reservoir nodes 𝑁 , we employ
he Grid Search technique. By defining the combination of candidate
alues for the hyperparameters, it thoroughly searches for every pos-
ible combination and assesses each combination’s performance on the
alidation set. Lastly, the optimal solution is determined by selecting
he combination of hyperparameters that performs the best.

𝑜𝑢𝑡 = 𝐕𝐿(𝑡)𝐑𝑇 (𝐑𝐑𝑇 + 𝜂𝐈), (3)

here 𝜂 = 1× 10−8 is a deviation parameter used to prevent overfitting
f 𝐖𝑜𝑢𝑡. After training, the output weight matrix 𝐖𝑜𝑢𝑡 is obtained. In
ther words, the input weight matrix 𝐖𝑖𝑛, the reservoir weight matrix
and the output weight matrix 𝐖𝑜𝑢𝑡 are fixed, we can use the trained
odel to identify spiral wave tips.

In the locating phase, we select the time slice of the system variables
t each moment for 𝑡 ∈ 𝑇2 = 100 (𝑇2 is the length of the testing
ata) as the input vector to obtain the corresponding spiral wave tip
ositions at time 𝑡. Typically, the RC model comprises two phases:
raining and locating, as depicted in Fig. 1. From Output to Receiver,
e designate the positions of non-zero elements in the output vector as

ips. However, the output data is a vector with values between 0 and
, the lower value indicates that the probability of the corresponding
oint being a tip is fewer. Therefore, we remove the points whose
alues are extremely low from the non-zero elements in the output
ector. Subsequently, tip positioning rules are modified: a non-zero
lement is selected as a tip if it is a local maximum and exceeds 0.5,
hile the remaining non-zero elements are set to 0. In evolving spiral
aves and turbulence cases, the generation and disappearance of the
umber and positions of tips are rapid. The huge changes in these spiral
ave systems cause the error to increase if the RC network is trained
sing the prior segment of the time series and then used to identify the
ip positions in the following time. To solve this problem, we randomly
huffle all the time slices 𝑉𝑆 (𝑡) and their corresponding tip position
ectors 𝑉𝐿(𝑡), and reorganize them into a new sequence. Then, we train
he RC network with the 𝑇 ∈ 𝑇1 part of the new sequence and identify
he next 100 steps.

In this paper, we choose 100 slices of different-moment to test the
ccuracy of the trained model, the accuracy of each task is evaluated
y two indicators: the number of accurate tip identifications(𝐴𝐶) and
istance error(𝐷𝐸). We process the output data 𝑉𝐿(𝑡) calculated by RC
nd this step is as follows. We select its local maximum value as the tips
nd divide them into 𝑡𝑟𝑢𝑒𝑅𝐶 and 𝑓𝑎𝑙𝑠𝑒𝑅𝐶 (the tips in a spatial range of
1 pixel of the tip calculated by JM are 𝑡𝑟𝑢𝑒𝑅𝐶 , and the other tips are
𝑎𝑙𝑠𝑒𝑅𝐶 ). Similarly, we divide the tips calculated by JM into 𝑡𝑟𝑢𝑒𝐽𝑀 and
𝑎𝑙𝑠𝑒𝐽𝑀 (if a spiral wave tip yielded by JM has a counterpart in the tips
alculated by RC (𝑇𝑅𝐶 ) within the spatial range of ±1, this tip counts as
𝑟𝑢𝑒𝐽𝑀 , and the other tips are 𝑓𝑎𝑙𝑠𝑒𝐽𝑀 ). The specific calculation steps
or the two indicators are shown in Algorithms 1 and 2. The accuracy
f the model is subsequently evaluated using the average of the 100

ets.
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Fig. 1. The reservoir computing (RC) model’s computation consists of training and locating phases. Comprising three components: an I/R layer, a reservoir, and a R/O layer. The
I/R layer maps a lower-dimensional input vector to a higher-dimensional reservoir network, with the input weight 𝐖𝑖𝑛 randomly assigned from a uniform distribution between
[−1, 1]. The reservoir layer is constructed from a sparse random ER matrix, wherein, nonzero element values are also randomly drawn from the interval [−1, 1]. The R/O layer
transforms a higher-dimensional reservoir network into a lower-dimensional output vector, necessitating the calculation of the output weight 𝐖𝑜𝑢𝑡 during the training phase. (a)
In the training phase, the input 𝐕𝑆 (𝑡) and the output 𝐕𝐿(𝑡) are known, then the 𝐖𝑜𝑢𝑡 is calculated. (b) In the locating phase, we put the variable of the spiral wave system for
𝑡 ∈ 𝑇2 as the input vector, and then we can get the tips of the corresponding spiral wave at time 𝑇2. Unlike the classic RC, the output is not used as the input for the next time
and the data is diverse.
Algorithm 1 Accuracy of Phase Singularity Calculation
Input: 𝑇𝐽𝑀 : the tips calculated by JM;

𝑇𝑅𝐶 : the tips calculated by RC;
𝑇 𝑟𝑢𝑒𝑅𝐶 : the 𝑇𝑅𝐶 tips in a spatial range of ±1 pixel for 𝑇𝐽𝑀 ;
𝐹𝑎𝑙𝑠𝑒𝑅𝐶 : the rest of the 𝑇𝑅𝐶 tips beyond the 𝑇 𝑟𝑢𝑒𝑅𝐶 ;
𝑇 𝑟𝑢𝑒𝐽𝑀 : the 𝑇𝐽𝑀 tip has a counterpart in the 𝑇𝑅𝐶 within the spatial
range of ±1;
𝐹𝑎𝑙𝑠𝑒𝐽𝑀 : the rest of the 𝑇𝐽𝑀 tips beyond the 𝑇 𝑟𝑢𝑒𝐽𝑀 ;
𝑛: the total number of lattice points in space;

Output: accuracy 𝐴𝐶𝑚𝑒𝑎𝑛
1: initial 𝐴𝐶𝑚𝑒𝑎𝑛 = 0 and 𝑇 = 100;
2: for 𝑡 < 100 do
3: compute 𝑇𝑅𝐶 and 𝑇𝐽𝑀 ;
4: compute 𝑇 𝑟𝑢𝑒𝑅𝐶 and 𝑇 𝑟𝑢𝑒𝐽𝑀 ;
5: compute 𝐹𝑎𝑙𝑠𝑒𝑅𝐶 = 𝑇𝑅𝐶 - 𝑇 𝑟𝑢𝑒𝑅𝐶
6: compute 𝐹𝑎𝑙𝑠𝑒𝐽𝑀 = 𝑇𝐽𝑀 - 𝑇 𝑟𝑢𝑒𝐽𝑀
7: 𝐴𝐶 = 1 - (𝐹𝑎𝑙𝑠𝑒𝑅𝐶+𝐹𝑎𝑙𝑠𝑒𝐽𝑀 )/n
8: end for
9: return 𝐴𝐶𝑚𝑒𝑎𝑛 = mean(∑𝑇

𝑡=1 𝐴𝐶)

3. Results

We utilize RC to identify the positions of tips in several different
spiral wave cases. These scenarios include different one-tip spiral wave
cases generated by different reaction–diffusion (RD) systems (CGLE,
Bär, FHN). Furthermore, an array of spiral wave types is investigated,
arising from parameter variations within the CGLE system, encompass-
ing one-tip, two-tip, evolving spiral waves, and turbulence. During the
numerical simulation process, we set 𝑑𝑡 = 0.01 and the total time
𝑇 = 105, and use the Euler method to generate the preliminary data
needed for the RC model.

3.1. Availability in simple spiral wave modes

First, we apply RC to the simplest spiral wave situation, which
only has one tip and hardly drifts in space. In this case, we choose
3

Algorithm 2 Algorithm for Calculating the Distance Error between the
𝑇𝐽𝑀 and the 𝑇𝑅𝐶
Input: 𝑁𝐽𝑀 : the number of tips derived from JM;

𝑁𝑅𝐶 : the number of tips derived from RC;
𝑥𝐽𝑀 : the x-coordinate corresponding to 𝑇𝐽𝑀 ;
𝑥𝑅𝐶 : the x-coordinate corresponding to 𝑇𝑅𝐶 ;
𝑦𝐽𝑀 : the y-coordinate corresponding to 𝑇𝐽𝑀 ;
𝑦𝑅𝐶 : the y-coordinate corresponding to 𝑇𝑅𝐶 ;
𝑁 : total number of test;

Output: distance error between the 𝑇𝐽𝑀 and the 𝑇𝑅𝐶 :𝐷𝐸𝑚𝑒𝑎𝑛
1: initial 𝐷𝐸 = 0, 𝐷𝐸𝑚𝑒𝑎𝑛 = 0 and 𝑛 = 0;
2: for 𝑁 < 100 do
3: for i in range(𝑁𝑅𝐶 ) do
4: for j in range(𝑁𝐽𝑀 ) do
5: 𝛥𝑥 = 𝑥𝑅𝐶𝑖 − 𝑥𝐽𝑀𝑗
6: 𝛥𝑦 = 𝑦𝑅𝐶𝑖 − 𝑦𝐽𝑀𝑗
7: 𝐷 =

√

𝛥𝑥2 + 𝛥𝑦2
8: end for
9: 𝐷𝐸 = 𝐷𝐸 +𝑀𝑖𝑛(𝐷)

10: end for
11: 𝐷𝐸 = 𝐷𝐸∕𝑁𝑅𝐶
12: end for
13: return 𝐷𝐸𝑚𝑒𝑎𝑛 = 𝐷𝐸∕100

the complex Ginzburg–Landau equation (CGLE) to simulate the spiral
wave, and the parameters are listed in the Supplementary Materi-
als [40]. Through training, we successfully realize the positioning of
the one-tip case, and its calculation accuracy (𝐴𝐶𝑚𝑒𝑎𝑛 in Algorithms 1)
is maintained at approximately 100% within the error range of 1 pixel.
(Without special instructions, the 𝐴𝐶𝑚𝑒𝑎𝑛 remains the same definition.)
We use the data consisting of 𝑉𝑆 = (𝑟𝑒𝑎𝑙(𝑊 ))𝑇 1 and 𝑉𝐿 = (𝑇 𝑖𝑝𝑠)𝑇 1 to
train the reservoir(𝑇1 = 1200). The hyperparameters of the reservoir
network are listed in Table 1. After training, we put the 𝑉 ′

𝑆 and obtain
the corresponding tip positions 𝑉 ′

𝐿 (𝑇 2 = 100). In Fig. 2(a), we display
the results of RC and JM, and it is clear that the precision of the
calculation is quite successful. Moreover, the results are effectively
maintained in other one-tip conditions of CGLE. Comparing the results
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Table 1
The hyperparameters of the reservoir network in different cases.
System Case Reservoir nodes (𝑁) Bias (𝜉) Spectral radius (𝜌) 𝑇2 𝑇1

CGLE One-tip

5000 0.1 70.4 100

1200
Two-tip 2500

FHN Spiral chimeras 4000
Bär Reentry 3000

CGLE Evolving spiral waves 7000 0.1 83.5 100 8000
Turbulence 2000
Fig. 2. A comparison of spiral wave tips identified by Jacobian determinant method (JM) and RC for CGLE, Bär and FHN are displayed ((a–d), respectively). Here, the corresponding
tips calculated by JM are shown by green hollow circles, and tips calculated by RC are shown by red solid triangles. Subplot (a) shows the result of the one-tip mode, where the
tip is chosen by the non-zero element which is the local maximum value. The results of two-tip case within the CGLE system are shown in subplot (b). Subplot (c) displays the
results of the tip rotating around the center under the Bär system. The computed results of spiral chimeras under the FHN are shown in subplot (d). Overall, the identification of
spiral wave tips coincides well with the target values. (Without special instructions, the green hollow circles and red solid triangles remain the same definition.) (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)
derived from RC and JM, we can easily find that there is no difference
between them, and the distance error (𝐷𝐸𝑚𝑒𝑎𝑛 in Algorithms 2) for the
100 different runs is nearly 0.

After successfully utilizing the one-tip case, we use RC to calculate
the tips in a more complicated two-tip mode. We discover that the
trained RC model is also capable of identifying the tips in two-tip
case, and the specific steps are listed below. By setting appropriate
parameters(specifically listed in the Supplementary Materials), we can
simulate the two-tip case and generate the experimental data. Similarly,
in this case, the specific settings of hyperparameters are also shown
in Table 1. Fig. 2(b) presents the results obtained in two-tip case,
we can see that the tips derived from RC and JM perfectly coincide.
By calculating 100 time slices, we obtain the relevant 𝐴𝐶𝑚𝑒𝑎𝑛 value
of 99.99%, which is nearly 100%. The 𝐷𝐸𝑚𝑒𝑎𝑛 value is 0.1, which is
smaller than half a pixel and far less than the system size. This indicates
that the RC model is still suitable for the two spiral wave tips mode.

In Fig. 2(c), we randomly show an example to compare RC and JM
in the reentry case by simulating the Bär [41] model, whose tip rotates
around a circle (The relevant parameters are listed in the Supplemen-
tary Materials). It is apparent that the tip position can be precisely
identified using the trained RC model. Additionally, we examine the
spiral chimeras produced by an FHN system [42], in which the tip
does not revolve around a regular circle. Here, we randomly select
4

the result for t = 11 to display in Fig. 2(d). Similarly, the red solid
triangle calculated by RC perfectly falls within the green hollow circle
calculated by JM. This reflects the good identification ability for spiral
wave tips of RC. Moreover, these moving spiral waves are similar
to anatomical reentry in cardiac illnesses [43], which rotate around
obstacles in the heart. They typically occur in the tricuspid annulus of
the atrium and may lead to reentrant tachycardia. Our findings show
that RC can also be perfectly competent in these circumstances, and it
has some practical implications for the identification and ablation of
spiral wave tips in cardiac issues.

Finally, we compare the outcomes of three different systems for one
tip, as shown in Fig. 3. Here, we perform 10 experiments again(each for
100 slices), each time using a different time slice and the same trained
model. The RC model successfully settles these three systems, and it can
accurately identify the tip position with the average accuracy 𝐴𝐶𝑚𝑒𝑎𝑛
exceeding 99.99% and the average distance error 𝐷𝐸𝑚𝑒𝑎𝑛 staying within
0.05 pixel. Even the poorest FHN system has a minimum accuracy
𝐴𝐶𝑚𝑒𝑎𝑛 of 99.9992% and a maximum distance error 𝐷𝐸𝑚𝑒𝑎𝑛 of 0.0932.
This may be due to the complex tip trajectory which is an evolving
spiral wave. In addition, these results indicate that the model has good
robustness for different systems, and imply that it may be feasible for

other models.



Chaos, Solitons and Fractals: the interdisciplinary journal of Nonlinear Science, and Nonequilibrium and Complex Phenomena 180 (2024) 114579Y. Chen et al.
Fig. 3. The results of accuracy (AC) and distance error (DE) are calculated by 10 experiments again in three different one-tip systems, each time using 100 different time slices
and the same trained model ((a, b), respectively). Even the poorest FHN system has a minimum accuracy 𝐴𝐶𝑚𝑒𝑎𝑛 of 99.9992% and a maximum distance error 𝐷𝐸𝑚𝑒𝑎𝑛 of 0.0932.
Overall, the average accuracy 𝐴𝐶 is greater than 99.99%, and the average distance error 𝐷𝐸𝑚𝑒𝑎𝑛 stays within 0.05 for all systems. It is demonstrated that the RC model makes
these three systems feasible.
Fig. 4. Comparison of spiral wave tips identified by the conventional method (JM) and by the RC for evolving spiral waves and turbulence are shown in subplots (a), (c),
respectively. (a), (c) illustrate that the tip positions (green hollow circle) calculated by JM method and the results obtained by RC model (red solid triangles) are highly consistent.
(b) and (d) show the distribution of accuracy 𝐴𝐶 and distance error 𝐷𝐸 calculated from 100-time slices under evolving spiral waves and turbulence. Wherein, the red dot indicates
accuracy AC, and the black dot indicates distance error 𝐷𝐸. In (b), the red dots (𝐴𝐶) are maintained at about 1, indicating that the accuracy of the calculation results is maintained
at 100% within the error range of 1 pixel. Besides, it can be seen that the black points (𝐷𝐸) are nearly 0, except for a time slice with 𝐷𝐸 = 0.2 pixel when t = 83. In (d), the
majority of the red dots still appear to be nearly 1. Meanwhile, the distance error of RC mostly remains below 1 despite some fluctuations, and the average value 𝐷𝐸𝑚𝑒𝑎𝑛 = 0.89,
is much smaller than the system size (N = 50). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
3.2. Applicability and challenges in evolving spiral waves and turbulence
modes

Moreover, complex systems have some unstable intermediate pro-
cesses, such as continuously generating and breaking spiral waves. In
this case, we test RC in similar situations by using the CGLE system, the
specific parameters are listed in the Supplementary Materials. Unlike
the two-tip case, we use the intermediate process of two tips evolving
into one tip to simulate this situation, which has multiple dynamic
tips and is referred to as evolving spiral waves. In Fig. 4(a), it can be
seen that three tip positions (green hollow circle) are calculated by JM,
while the results obtained by RC model also include three tips (red solid
triangles), and their positions are highly consistent with the JM results.
This proves that tips can still be precisely identified using the RC model
5

even in the evolving spiral waves case. Additionally, we calculate the
𝐴𝐶 and 𝐷𝐸 of this case, and the specific results are shown in Fig. 4(b).
We can see that the red dots (𝐴𝐶) are maintained at approximately 1,
indicating that the accuracy of the calculation results is maintained at
100% within an error range of 1 pixel. Besides, the black points (𝐷𝐸)
are nearly 0, except for a time slice with 𝐷𝐸 = 0.2 pixel when t = 83.
This demonstrates that the accuracy of RC calculation results is very
high and has significant implications for applying RC to more complex
situations involving more tips and faster position changes.

We next demonstrate that the RC model can be expanded to a
turbulent system. The CGLE system transitions from simple spiral waves
to turbulence when the coupling strength reaches a certain value [44].
The data corresponding to turbulence are obtained by setting the
appropriate parameters of CGLE system (listed in the Supplementary
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Fig. 5. The influence of additive Gaussian white noise on identifying tips. In subplots(a, b), an exemplary snapshot of variable real(W) (CGLE model) is shown for different noise
intensities 𝜎 = 0.1, 0.5, respectively. When 𝜎 = 0.1, the results of RC are perfectly consistent with JM. As the noise intensity rises, there are some fluctuations in the calculation
results, two tips can be formed close to the target value when 𝜎 = 0.5. In subplot (c), the accuracy AC is depicted which is calculated from JM(red bar) and RC(yellow bar),
depending on 𝜎. The error bar represents the maximum and minimum values of every 100 time slices. The results illustrate that the accuracy of the RC model (𝐴𝐶𝑚𝑒𝑎𝑛) declines
within a narrow range as the noise intensity 𝜎 rises. In contrast, for the traditional JM, 𝐴𝐶𝑚𝑒𝑎𝑛 is roughly at the same level as that of the RC model initially and then decreases
sharply after exceeding 0.2 before remaining constant. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Materials). Similarly, we use the same processing approach mentioned
in Section 2 to process the output data. Here, we randomly choose an
example for conducting the comparison between RC and JM, and the
results are displayed in Fig. 4(c). The change rate of the tips becomes
more complex than the previous cases, but surprisingly, the majority of
the red dots (𝐴𝐶) in Fig. 4(d) still appear to be approximately 1. This
means the calculation accuracy 𝐴𝐶 of the RC model in the turbulence
case is nearly consistent with the evolving spiral waves. We can see
that the distance error 𝐷𝐸 (black dots) of RC mostly remains below 1
despite some fluctuations, and the average value 𝐷𝐸𝑚𝑒𝑎𝑛 = 0.89. This
result is much smaller than the system size (N = 50), although it looks
larger than the DE in Fig. 4(b). In addition, we once again verify the
feasibility of the RC model in most conditions. This model identifies the
tip positions in all 100 time slices, except time-sliced data (𝑡 = 8, 63).
We use the 98 time slices which the tips are identified to calculate
𝐷𝐸𝑚𝑒𝑎𝑛.

3.3. The influence of Gaussian white noise in the identification

In experiments, measurement inaccuracies unavoidably exist when
data are recorded. To test the robustness of the proposed model, we
consider adding Gaussian white noise to the input variable 𝑉𝑆 (𝑡) to
replicate noise during data recording. In other words, we add white
noise 𝜉 to each time slice and use 𝑉𝑆 (𝑡) + 𝜉 to replace the original 𝑉𝑆 (𝑡)
for calculating tip positions. (the white noise intensity is represented
by 𝜎.)
6

Fig. 5(a), (b) display the results of adding different noise intensities
to the one-tip case at t = 20. They are the same time slice with noise
intensities 𝜎 = 0.1 and 𝜎 = 0.5, respectively. We can see that when
𝜎 = 0.1, the model can accurately calculate the tip position in Fig. 5(a).
However, as the noise intensity rises, some fluctuations are observed
in the calculation results, and two tips can be formed close to the
target value, as shown in Fig. 5(b). To demonstrate the accuracy of
RC, we calculate the trends exhibited by JM and RC as the noise level
varies. In Fig. 5(c), the results illustrate that the accuracy of the RC
model (𝐴𝐶𝑚𝑒𝑎𝑛) declines within a narrow range as the noise intensity 𝜎
rises. In contrast, for the traditional JM, 𝐴𝐶𝑚𝑒𝑎𝑛 is roughly at the same
level as that of the RC model initially and then decreases sharply after
exceeding 0.2 before remaining constant. This demonstrates that the
RC model outperforms traditional methods in terms of robustness for
spiral wave tip identification.

Similarly, we conduct calculations for the evolving spiral waves
case. We randomly select the time slice of t = 3 for display in Fig. 6(a–
d), and the results correspond to noise intensities of 𝜎 = 0, 0.1, 0.5,
and 1.0. In Fig. 6(a), the RC results are perfectly consistent with JM.
When the noise intensity 𝜎 = 0.1, the AC remains at 100%, and the
tip position results of RC are robust, as shown in Fig. 6(b). As the
noise intensity further increases, the AC slightly decreases, and the tips
identified by RC are near the target values, as shown in Fig. 6(c). When
the noise intensity reaches 1.0, RC can still identify most of the tips
within a certain range of error, although the ability of RC to identify
tips is significantly reduced, as shown in Fig. 6(d). We calculate the
trends for both JM and RC as the noise intensity varies in Fig. 6(e). It
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Fig. 6. In subplots (a–d), an exemplary snapshot is shown for different noise intensities 𝜎 = 0.1, 0.5, 1.0, respectively. As the noise intensity increases, the accuracy of tip
identification gradually decreases. The accuracy of RC decreases as the identifying tips from three highly accurate points to two points with deviation. Subplot (e) shows the
variation diagram of RC and JM affected by white noise intensity (𝜎) under the evolving spiral waves case. It is obvious that as the noise intensity increases, the 𝐴𝐶𝑚𝑒𝑎𝑛 of the
RC model fluctuates, but it still remains approximately 1. Meanwhile, 𝐴𝐶𝑚𝑒𝑎𝑛 for JM significantly decreased with the increase until stabilizing at 0.9.
is obvious that as the noise intensity increases, the accuracy 𝐴𝐶𝑚𝑒𝑎𝑛 is
slightly decreased compared to that attained in the one-tip case, but it
still approaches 1. However, the 𝐴𝐶𝑚𝑒𝑎𝑛 of JM significantly decreases
as 𝜎 increases until stabilizing at 0.9 (according to the system size of
50 × 50, each time slice corresponds to 2500 points, and an accuracy
of 0.9 indicates that approximately 250 points are incorrect, which is
very large compared to the number of tips). In comparison, RC still
maintains better robustness than JM for the other time slices. From the
results obtained in the above two situations, it is evident that the RC
model is more suitable for identifying the tip positions under noise.

4. Conclusions

In this paper, we use a modified RC model to identify tips from
different data generated by various RD systems. Firstly, the RC model
is used to identify tips in simple cases (spiral waves modeled by CGLE
with one or two tips), as shown in Fig. 2(a), (b). The results show that
the accuracy AC is nearly 100% and the distance error DE is below
7

0.1. Secondly, the RC model also exhibits extreme tip identification
accuracy for the moving one-tip spiral wave cases involving other
different systems (Bär, FHN), as shown in Fig. 2(c), (d) and Fig. 3.
Thirdly, RC model is also used to identify the tips of more complex
cases, such as evolving spiral waves and turbulence. The results reveal
that the RC model is still valid in most conditions, as shown in Fig. 4.
Finally, we use RC model to identify tips that have perturbation when
recorded. The results show that RC model is more robust than JM in
terms of identifying tips under noise, as illustrated in Figs. 5,6.

Overall, the modified RC model has huge advantages regarding tip
identification. Firstly, RC model reduces the computational difficulty
of identifying, as it only needs one time slice instead of multiple time
slices before. Secondly, for multivariate systems, RC model only needs
one variable’s data to identify tips while the previous system needs 2
variables at least. Thirdly, it is robust as it does not need an initial
phase point while other methods do. Finally, RC exhibits a stronger
robustness when the data are polluted by noise than former JM does.
Further investigation into the proposed RC approach has the potential
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to expand our understanding significantly in identifying topological
structures. Additionally, this facilitates the provision of recommenda-
tions for practical applications. For instance, in cardiac care, the RC
model could be utilized to monitor and pinpoint tip positions in real
time, potentially predicting the onset of spiral wave disruptions.
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