
Nonlinear Dyn (2023) 111:15165–15175
https://doi.org/10.1007/s11071-023-08642-0

ORIGINAL PAPER

Modeling the scaling properties of human mobility in virtual
space

Mingyan Wang · An Zeng · Xiaohua Cui

Received: 30 March 2023 / Accepted: 2 June 2023 / Published online: 17 June 2023
© The Author(s), under exclusive licence to Springer Nature B.V. 2023

Abstract People are increasingly involved in online
activities. Online activities can be regarded as move-
ments in virtual space, such as jumping from webpage
to webpage while surfing online, switching channels
while watching TV, and browsing commodities while
shopping online, which can affect information propa-
gation, innovation spread, social activities, etc. Most
previous efforts have been devoted to modeling the
scaling properties of humanmobility in physical space.
Few studies aim to establish a unified and integral
model to understand the fundamental dynamics under-
lying human virtual mobility. In this paper, we study
human mobility in virtual space empirically and the-
oretically based on two datasets involving TV watch-
ing and online shopping and attempt to answer three
unsolved issues. First, human virtual mobility shares
common features, supported by the fact that striking
agreements appear in the scaling properties of both
datasets. Second, there exists a universal rule governing
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an individual’s choice in virtual mobility, which is dis-
tinct from that in the realworld due to travel restrictions.
Third, there exists a unified model incorporating the
behavior rule unique to virtual space under the frame-
work of Exploration and Preferential Return, which
can be used to reproduce the scaling properties of vir-
tual mobility. We reveal the mechanism behind human
virtual mobility through consistent scaling properties
and develop a corresponding dynamic model based on
empirical data.

Keywords Human virtual mobility · Scaling proper-
ties · Memory effect · Behavior mechanism

1 Introduction

In the real world, individuals constantly travel from one
location to another, forming trajectories. Uncovering
the statistical patterns that characterize these trajecto-
ries [1–4] is of importance for disease control [5,6],
congestion alleviation [7,8], information propagation
[9,10], etc. The key to understanding human mobility
dynamics is to establish models to reproduce the scal-
ing properties of empirical data such as thewaiting time
distribution P(�t), the distance distribution P(�r),
and the visitation frequency fr , where �t denotes the
time spent by an individual at a location, �r is dis-
tances covered by an individual between consecutive
sightings, and fr is the frequency f of the rth most
visited location [11]. Moreover, the model must be
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self-consistent, which requires that it can reflect the
behavior rules of travelmicroscopically and can be uni-
fied with kinds of scaling properties macroscopically.
A representative work is the Exploration and Preferen-
tial Return (EPR) model proposed in 2010 [12]. Two
generic mechanisms, exploration and return, govern-
ing human trajectories are introduced to account for
the empirically observed scaling exponents. In many
subsequent studies, rules within the EPR mechanism
were added or adjusted to make predictions more con-
sistent with empirical data. The representative mod-
els include the radiation EPR model [13,14], memory-
preferential random walk model [15], and EPR model
conditional on current location [16]. These quantifi-
able human mobility models have evolved from gen-
eral randomwalkmodels [17] tomodels based on travel
mechanisms or memory effects, etc., which match bet-
ter with reality [12,18]. The involved fields have also
expanded from human travel to urban mobility [19],
income segregation [20] and even mobility in virtual
space [21].

With the rapid advances in information and com-
munication technologies (ICT), people are increas-
ingly involved in online activities. Online activities can
be regarded as virtual movements [21,24]. Examples
include continuous browsing from commercial web-
sites in a single online session, continuous channel
switching on a digital TV, and consecutive posting on
social networking sites. Facilitated by massive online
datasets, an increasing number of studies are devoted to
revealing the intrinsic patterns underlying human vir-
tual mobility. Quantities concerned in the virtual space
are similar to those in the physical world, including the
waiting time distribution P(�t) (�t is the time spent
by an individual at a site), the visitation frequency fr
(the frequency f of the rthe most visited site), and the
number of distinct sites S(t) (the number of sites vis-
ited). From the real world to virtual space, some stud-
ies have explored the characteristics of human virtual
mobility. Firstly, the visitation frequency fr of human
virtual mobility was found to follow Zipf’s law, and
an EPR model regardless of waiting time �t was con-
structed to reproduce fr ’s scaling properties [21]. Then,
fr was further confirmed to follow Zip’s law, and the
number of distinct sites S(t) is challenged not to be
power law like in the real world. Moreover, a model
integrating the preference attachment mechanism and
EPR framework was established to interpret the expo-
nents of these quantities [22]. Further, the scaling prop-

erties of real travel and virtual movements were com-
pared. It was found that the waiting time distribution
P(�t) of human virtual mobility is heavy-tailed and a
model was proposed to link the critical exponents char-
acterizing the spatial dependencies in human mobility
and social networks [23]. Recently, there have been dis-
cussions on the scaling properties of virtual movement
at different scales. Reddit posting data proves that fr ,
S(t), and P(�t) are power-law at the community level
[24], while cross-app usage data indicates the power-
law properties of fr and the non-power-law properties
of S(t) [25].

However, there is still a lack of an empirical, uni-
fied, and integral dynamic model for human virtual
mobility, which is manifested in a series of unsolved
issues. First, most studies only involved scaling prop-
erties of one specific online activity, without compar-
ing exponents across different datasets [24]. Unlike the
empirical exponents of real-world travel, scaling prop-
erties have been proven highly uniform in dollar-bill
tracking [1], mobile-phone data [26–28], taxi data [29],
etc. Second, the relationship between the waiting time
�t , the number of distinct sites S(t), and the visita-
tion frequency fr are not fully discussed. Some mod-
els ignore the waiting time �t and take the number of
movements n as the only key parameter to derive the
scaling exponents [21], and some other models only
explain the characteristics of visitation frequency fr
[22,25]. Third,mobility dynamics aremostly described
as a memory-based randomwalk process [30–33]. Var-
ious assessments and quantifications of the memory
effect are based on their assumptions and are not ver-
ified in empirical data [22,24]. Therefore, three ques-
tions regarding human mobility in virtual space natu-
rally arise. Does human mobility in virtual space share
common features? Does online behavior data contain
generic rules? Does there exist a unified model that
can reproduce the properties of the waiting time dis-
tribution P(�t), the number of distinct sites S(t), and
the visitation frequency fr? In this paper, we discuss
human virtual mobility based on two typical datasets,
fromphenomena to rule and further tomodel, to answer
the three issues raised.

2 Data description

Individuals’ changes in physical locations are known
as mobility in the real world [1–4]. Accordingly, the
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changes in virtual locations, that is, online activities,
are called virtual mobility [21,24]. In the past few
years, network technology hasmade it possible to track
humans’ online footprints. Phone records, online shop-
ping records, web browsing records, and other datasets
have provided a newmomentum to study humanmobil-
ity in virtual space.Although these datasets vary greatly
in terms of their fields and sources, the results seem
to agree on a number of quantitative characteristics of
human mobility [34].

In this paper, we use two datasets from different
domains to uncover the scaling properties characteriz-
ing individual mobility. Dataset D1 contains TV view-
ing records of 30,000 anonymous users in a large city
in China from July 2015 to September 2015. Dataset
D2 is obtained from a large multicategory online store
capturing 60,000 anonymous users’ click records in
October 2019. In D1, a user’s switch from one channel
to another is considered a movement in virtual space.
In D2, a movement between commodities consists of
two consecutive browsing activities (see Fig. 1). Unlike
travel in the real world, travel in virtual space is instan-
taneous [35]. The memory effect in real travel can last
for months or years, but viewing/clicking effects after
one day or even one hour are almost independent of
previous ones. If a user’s 3-month viewing records are
regarded as one trajectory, users’ footprints are too ran-
dom to truly characterize scaling properties. Therefore,
we segment the sequence for each user and take contin-
uous records as one trajectory [21]. A user may have
multiple trajectories in the observation window (see
Supplementary Section S2).

3 Results

3.1 Empirical scaling properties

Previous studies have discovered a series of scaling
properties of virtual mobility in online data. For exam-
ple,mobile phonedata show that thewaiting timedistri-
bution P(�t) is heavy-tailed, that is, P(�t)∝�t−1−β

[23]. Taobao shopping records and Reddit records both
indicate that the frequency f of a user visiting a given
location and its rank r follow Zipf’s law: fr∝r−ζ [22,
24]. These characteristics seem to imply that mobility
in virtual space can be explained by models for the real
world, especially the EPR model [12]. However, some
studies have questioned that the number of distinct sites

S in virtual space is different from S(t)∝tμ in the real
world. Some researchers proposed S(t)∝ A

B+t
μ
, while

others believed that S(n)∝nμ, where n is the number
of steps. Another significant statistical characteristic,
Pnew, the probability of exploring new locations, is also
controversial and is assumed to follow: Pnew∝S−γ ,
Pnew∝ A

B+t or Pnew∝n−γ [21,22], etc.
We comprehensively explore the scaling properties

using two datasets involving TV watching and online
shopping. First, we measure the waiting time distribu-
tion P(�t). In the TV viewing record dataset (D1),
�t is the viewing time of the audience on a TV chan-
nel, calculated as the time difference between the start
time and end time of a record. In the online shopping
dataset (D2), �t is the browsing time for a product,
approximately the time interval between two consec-
utive browsing records. We find that P(�t)∝�t−1−β

with β1 = 0.78±0.11, β2 = 0.88±0.08 (see Fig. 2(a)),
which is consistent with the form in the real world,
where β = 0.8±0.1 [12]. Then, we discuss the num-
ber of distinct sites S(t), finding that S(t)∝tμ, where
μ1 = 0.52±0.007, μ2 = 0.57±0.011 (see Fig. 2(b)).
In the real world,μ = 0.6±0.02 [12]. It is worth noting
that β �=μ, indicating that travel in virtual space does
not follow a continuous-time random walk (CTRW)
[31]. Note that there is a slowdown in exploring new
locations at large timescales because μ < 1, suggest-
ing a decreasing tendency to visit unvisited locations.
Another quantity closely related to S is Pnew, the prob-
ability of exploring a new location. Pnew deviates from
the expectation: Pnew∝S−γ (see Fig. 2c), suggesting
that it may be inappropriate to directly apply the clas-
sical EPR model to model movements in virtual space.
Finally, we plot the visitation frequency fr and rank r ,
which can bewritten as fr∝r−ζ , ζ1 = ζ2 = 0.94±0.02
(see Fig. 2d). The visitation pattern of virtual mobility
is uneven, but this unevenness is weaker than that in
the real world, where ζ = 1.2±0.1.

Naturally, we can draw two conclusions. First, the
empirical characteristics or exponents in virtual space
are not the same as those in physical space, suggest-
ing that the mechanism behind travel in virtual space
differs from that in reality. Second, there are similari-
ties between the scaling properties of the two datasets.
We notice that similar Pnew and ζ1 = ζ2. Although
time-related exponents β1 �=β2, μ1 �=μ2, μ = 2

3β hold
for both. This suggests that the scaling properties are
determined by both the unified behavior mechanism
and the system features.
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Fig. 1 Human virtual mobility in TVwatching and online shop-
ping. a In theD1 dataset, switching between channels are consid-
ered movements in virtual space. b In the D2 dataset, browsing

different products is considered virtual movement. Other figures
in the paper are based on the two datasets

3.2 Human mobility model in virtual space

Before introducing our model, we first emphasize a
recognized premise that the waiting time distribution
P(�t) in virtual space is heavy-tailed, as addressed by
previous research [23]. However, there is still a lack of
a unified interpretation to derive other scaling proper-
ties: S(t), Pnew, and fr .With our framework, individual
human trajectories are characterized using two generic
mechanisms: exploration (visiting a new location) and
preferential return (visiting an already visited location).
At each time step t , the individual explores a new site
or returns to a previously visited site. The probability
of exploration is generally assumed to follow a power
law as Pnew = ρS−γ [12]. For the probability P for an
individual moving to a previously visited site, there are
many configurations such as Pr = fr∝ 1

r , Pr∝ 1+λki∑
1+λkn

[12,22]. However, the above forms are only assump-
tions. The forms of Pnew and Pr in virtual mobility
have not been verified.

Particularly, in our model, the specific rules govern-
ing the return are summarized from the empirical data.
We name it the Virtual Exploration and Preferential
Return (VEPR) model. We first verify the relationship
between Pr and r . It is worth noting that Pr∝log10

1
r ,

which is different from Pr∝ 1
r in the real world (see Fig.

3a). This discrepancy indicates that the memory effect
of return in virtual space is weaker. In the real world,
considering time anddistance, travel costs are relatively
high, so the memory effect is particularly strong. Peo-
ple often return to a few locations, such as home and
company, manifested as Pr∝ 1

r . However, there are no
such restrictions in virtual space, where almost every
movement is free and instant. Even infrequently visited
sites have a certain probability of return traffic, shown
as Pr∝log10

1
r (see Fig. 3b).

As shown in Fig. 3(a), Pr∝log10
1
r . We use the ordi-

nary least square (OLS) method to obtain the coeffi-
cient k of the equation Pr≈klog10

1
r + c. However, the

coefficient k varies with S, the number of distinct loca-
tions visited previously (see Fig. 5a). This means that
Pr∝log10

1
r is still not the most concise form, which is

also not conducive to deriving scaling exponents the-
oretically. Therefore, we need to rescale the parame-
ters in the regression equation. A surprising finding is
that k and 1

S are almost perfectly linear (see Fig. 4a).
Therefore, we change the equation to Pr∝ 1

S log10
1
r for

regression. There is no significant correlation between
the new coefficient k′ and S. For the intercept c′, we find
that it is proportional to log10S, that is, c′≈c′′log10S
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Fig. 2 Scaling properties of empirical data. D1 is the 3-month
TV watching records, and D2 is the 1-month browsing records
of a shopping site, represented by red circles and green trian-
gles, respectively. a The waiting time distribution P(�t). The
fitted straight lines represent �t−β with β1 = 0.78±0.11,
β2 = 0.88±0.08. b The number of visited distinct sites S
versus time t (TV watching data in minutes, shopping data in

seconds). The fitted straight line indicates that S(t)∝tμ, where
μ1 = 0.52±0.007, μ2 = 0.57±0.011. c For the probability
of exploring a new location Pnew versus S, the power law is
not obvious compared with real travel, indicating that the explo-
ration mechanism is different from that in the real world. d The
visitation frequency fr versus rank r , showing fr∝r−ζ , with
ζ1 = ζ2 = 0.94±0.02

(see Fig. 4b). Another surprising finding is k′≈c′′ (see
Fig. 4c). Now, we have

Pr≈klog10
1

r
+ c≈ 1

S
(k′log10

1

r
+ c′)≈ 1

S
(k′log10

1

r

+c′′log10S)≈ 1

S
(k′log10

S

r
), (1)

which can be written as

Pr≈λ

S
log10

S

r
+ σ. (2)

The OLS results of Eq. (2) show that there is a lin-
ear Pr and 1

S log10
S
r at a 95% confidence level (see

S4 for detailed OLS results). λ and σ under different S,
obtained byEq. (2), obey normal distributionwithλ1 =
λ2 = 1.44±0.03 (see Fig. 4e), σ1 = 0.0026±0.0003,

σ2 = 0.0040±0.0023 (see Fig. 4f) and are uncorre-
lated with S (see Fig. 4d). λ1 = λ2 illustrates that
the rules governing peoples’ return in human virtual
mobility are common. σ1 and σ2 are close to 0, con-
sistent with the previous approximation that k′≈c′′. In
conclusion, the probability of returning to the rth loca-
tion is Pr≈ λ

S log10
S
r +σ (see S4 for the detailed process

of rescaling). After rescaling, all Pr and 1
S log10

S
r fall

near the straight line with a slope of 1.44 (see Fig. 5b).
We develop our VEPR model according to Eq. (2).

A typical step for a person browsing in virtual space
is schematically illustrated in Fig. 6. An individual
can perform one of the two complementary processes
at each step: return or exploration. If the individual
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(a) (b)

Fig. 3 The rules governing preferential return summarized from
empirical data. a Verification of the regression forms of Pr and
r . We plot Pr versus r , Pr versus 1

r , and Pr versus log10 1
r when

S = 15 and S = 20, finding that Pr∝log10
1
r . b Comparison of

two return rules. The return probability distribution is relatively
uniform when Pr∝log10

1
r

(a)

(b)

(c)

(d)

(e)

(f)

Fig. 4 Rescaling key parameters in the preferential return
rules. a The slope k of Pr≈klog10

1
r + c under different S

varies greatly and is proportional to 1
S . b The intercept c′ of

Pr≈ 1
S (k′log10 1

r +c′) is almost a linear function of log10S, writ-

ten as c′≈c′′log10S. c k′≈c′′. d λ and σ of Pr≈ λ
S log10

S
r +σ are

not significantly correlated with S. e Distribution of λ with λ1 =
λ2 = 1.44±0.03. f Distribution of σ with σ1 = 0.0026±0.0003,
σ2 = 0.0040±0.0023

chooses to return to a previous location, the visita-
tion probability Pr correlates with rank r , expressed
as Eq. (2). Alternatively, he visits a new location with
the probability Pnew = 1 − Pret = 1 − ∑

Pr . In what
follows, we show that the individual mobility model
incorporating preferential return and exploration is suf-
ficient to explain a series of scaling properties.

3.3 Theoretical analysis

Our VEPR model has two parameters, λ and σ , which
control the user’s probability of returning to a previ-
ously visited location and determine the tendency of
the user to explore a new location. We aim to obtain
the analytic forms of the three characterizing quanti-
ties mentioned above.
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)b()a( Before After

Fig. 5 Comparison before and after rescaling. a Before rescaling, the slope and intercept vary with S. b After rescaling, all Pr and
1
S log10

S
r fall near the straight line with a slope of 1.44

Fig. 6 Schematic model illustration. A typical trajec-
tory of an individual visiting the 4 locations denoted
by letters a − e with different colors is indicated:
a→b→c→a→c→d→b→a→a→a→c. At time t , the user
has visited S = 4 locations. At time t + �t (with �t drawn

from P(�t)∝�t−1−β , the user can either return to a previously
visited location with probability Pr≈ λ

S log10
S
r + σ or visit a

new location chosen from locations not visited with probability
Pnew = 1 − Pret (Pret = ∑S

r=1 Pr )

The probability of exploring a new location Pnew.
Obviously, Pnew = 1− Pret . Pret is the sum of proba-
bilities of returning to the previously visited locations.
In general, we find (see Supplementary S4)

Pnew = 1 −
S∑

r=1

Pr = 1 −
S∑

r=1

(
λ

S
log10

S

r
+ σ)

= 1 − (
λ

S
log10

SS

S! + σ S)≈4

3
S− 1

2 . (3)
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The number of distinct sites S(t). We note that the
probability that an individual moves to a new location

is approximately 4
3 S

− 1
2 , that is, dS

dn≈ 4
3 S

− 1
2 ∝S− 1

2 , pre-

dicting S∝n
2
3 , where n is the number of discrete moves

the individual made up to time t . Given the heavy-
tailed waiting time distribution P(�t)∝�t−1−β , time

t scales with the number of moves n as t∝n
1
β [12],

indicating that S(t) follows S(t)∝tμ with

μ = 2

3
β. (4)

Since β1 = 0.78, β2 = 0.88, we have μ1 = 0.52,
μ2 = 0.57, identical to the exponents of empirical data.

The visitation frequency fr . We introduce an inter-
mediate quantity mr , the number of visits to the rth
location. Note that at each step, the probability that
mr increases is the probability that the rth site is
returned, that is, dmr

dn = Pr , where Pr , as in Eq. (2).
Because Pr discussed here is for one site and σ is
a small quantity close to 0, we further approximate
dmr
dn = Pr≈ λ

S log10
S
r . In addition, dS

dn≈ 4
3 S

− 1
2 , and we

obtain
dmr (S)

dS
≈ 3λ

4ln10
S− 1

2 ln
S

r
. (5)

Its solution ismr (S)≈ 3λ
2ln10 (S

1
2 ln S

r −2S
1
2 ). As the vis-

itation frequency fr = mr
n ≈ mr (S)

4
3 S

− 1
2
, after simplification

and approximation, we have (see Supplementary S4)

fr∝r− 3λ
2ln10 . (6)

Eq. (6) predicts ζ = 3λ
2ln10 , so ζ1 = ζ2 = 3×1.44

2ln10 =
0.94,which is in excellent agreementwith the empirical
value.

Note that the exponents β of the waiting time P(�t)
are different in the two datasets. The exponents μ of
S(t), related to t , are also different. However, μ = 2

3β

holds for both datasets. Moreover, the scaling prop-
erties of Pnew and fr are identical. It reveals that for
different virtual movements, the selection mechanism
behind each individual is the same, but due to different
waiting time in viewing, browsing, etc., β and μ vary
with scenes. However, the underpinning is unified.

3.4 Numerical simulation

We numerically simulate our VEPR model to verify
the scaling laws of three characterizing quantities. Note
that the waiting time distribution P(�t) is determined

by the specific system, and we take it as a premise and
set β = 0.78 according to the TV watching data. We
use the setting of 20000 trajectories in a space of 300
sites, that is, N = 20000 and M = 300. λ is the most
critical parameter in our model, and we set λ = 1.44
for all S according to the empirical results.

The results, which are shown in Fig. 7, indicate that
the three characterizing quantities are consistent with
the empirical results. For further quantitive analysis,
we conduct the independent sample T test for each
pair of empirical values and simulated values of S(t),
Pnew, and fr respectively based on the 30,000 viewing
records and 20,000 simulation trajectories. An empir-
ical value is colored green if the P value is less than
0.05 and is red otherwise. More than 80% of point
pairs pass the T test, proving our simulation’s effec-
tiveness (see S6 for detailed T test results). Moreover,
we note that there is a slight deviation between the
simulation and the empirical results when S/r is small
or large. When S/r is small, only a few points can
be used for regression. When S/r is large, few peo-
ple watch/browse many sites in one trajectory, so the
sample size is small. In both cases, the parameter λ

is biased from λ (also reflected in Fig. 4d). Therefore,
for small or large S/r , the simulation results obtained
by substituting λ for the true λ are biased. In addition,
the number of distinct sites S visited by individuals is
much smaller than M = 300, showing that each step of
each individual is based on the principles of our model,
without overflow, which also conforms to the virtual
space that has almost no space size restriction. Thus
far, our VEPR model has been validated in simulation
and theory.

4 Discussion

Movements in virtual space have attracted increas-
ing academic attention. We explore virtual mobility
dynamics based on two online datasets of different
fields. We find striking consistency in the two virtual
movements by measuring the scaling properties and
summarize a universal choice mechanism behind vir-
tual travel fromempirical data.We also develop an indi-
vidual mobility model called the Virtual Exploration
andPreferentialReturn (VEPR)model.Comparedwith
previous studies, we comprehensively discuss the scal-
ing characteristics across datasets and find a more con-
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Fig. 7 Comparison between simulation and theoretical predic-
tions of theVEPRmodel. The number of trajectories N = 20000,
the number of locations M = 300, the exponent of waiting time
β = 0.78, and the parameter λ = 1.44. The circles represent the
simulation results, the squares represent the empirical results, and
the red line represents theoretical value. The independent sample
t tests are conducted for each pair of simulated and empirical val-

ues. A square is colored green if the P value is less than 0.05 and
is red otherwise. Most squares are green, proving that the empir-
ical results are consistent with the simulation results at a 95%
confidence level. a The number of distinct locations S(t). b The
probability of exploring a new location Pnew . c The visitation
frequency fr

cise behavior rule, contributing to revealing the unified
underpinning of human mobility.

Our results can be summarized as follows. (i) We
find that the scaling properties of virtual mobility are
jointly determined by the unified mechanism and sys-
tem features. The characteristics of the probability of
exploring a new location, Pnew, are the same for TV
watching and online shopping. The exponents of vis-
itation frequency fr are also the same. The equation
μ = 2

3β holds for both datasets, where β is the waiting
time distribution’s exponent and μ is the exponent of
the number of distinct locations S(t). (ii) We summa-
rize a specific rule that governs individuals’ behavior
from the empirical data. In virtual space, the memory
effect is Pr∝log10

1
r . Compared with Pr∝ 1

r in the real
world, the visitation probability ismore uniform,which
is in agreement with the smaller travel restriction in vir-
tual space. (iii) We obtain a more general choice mech-
anism by rescaling the coefficients to be independent
of S. The equation is Pr≈ λ

S log10
S
r + σ , which can

reflect the return rule and facilitate theoretical deriva-
tion. (iv)We incorporate the rule under the EPR frame-
work to establish our VEPR model. The three scaling
properties can be reproduced in theory and simulation,
which proves the model’s validity. In conclusion, we
extract the rule of virtual travel fromempirical data, and
our individual mobility model based on the rule repro-
duces the scaling properties in theory and simulation.
At the same time, the virtual mobility’s features can
also be well reflected by the mechanism of our model.
The same macro scaling properties and micro behavior
mechanism behind watching TV and online shopping

inspire further exploration of whether there is a uni-
fied underpinning behind other virtualmovements such
as web browsing, online communication, and social
interactions. Additionally, our work also contributes to
solving practical problems. It is feasible to establish
the mobility model for each individual according to
his/her λ to predict his/her digital trajectory, which can
be applied to make personalized recommendation in
practice.

While we treat all users’ trajectories equally for
regression to obtain the rule governing return, users
are heterogeneous in behavior. The model incorporat-
ing memory heterogeneity may reproduce much richer
statistical properties. In addition, it is worthwhile to
obtain each user’s λ by regression to understand his
mobility style. For example, a large λ indicates that
the individual prefers to return to previous locations,
while a small λ represents the fact that he is an explorer.
This key parameter has potential applications for cur-
rent important issues such as traffic optimization and
online recommendation. Generally, it is of profound
significance to extend the model considering hetero-
geneity at both individual and group levels.
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