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• We study analytically and numerically the fitness–complexity metric (FCM) and the minimal extremal metric (MEM) for nested
networks.

• For both metrics, we derive exact equations for node scores in perfectly nested matrices.
• Our analytic results explain the convergence properties of the fitness–complexity metric.
• In real data, the MEM can produce improved rankings if the input data are reliable.
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a b s t r a c t

Numerical analysis of data from international trade and ecological networks has shown
that the non-linear fitness–complexity metric is the best candidate to rank nodes by
importance in bipartite networks that exhibit a nested structure. Despite its relevance for
real networks, the mathematical properties of the metric and its variants remain largely
unexplored. Here, we perform an analytic and numeric study of the fitness–complexity
metric and a new variant, called minimal extremal metric. We rigorously derive exact
expressions for node scores for perfectly nested networks and show that these expressions
explain the non-trivial convergence properties of the metrics. A comparison between the
fitness–complexity metric and the minimal extremal metric on real data reveals that the
latter can produce improved rankings if the input data are reliable.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Network-based iterative algorithms are being applied to a broad range of problems, such as ranking search results in
the WWW [1], predicting the traffic in urban roads [2], recommending the items that an online user might appreciate [3],
measuring the competitiveness of countries in world trade [4,5], ranking species according to their importance in
plant–pollinatormutualistic networks [6,7], assessing scientific impact [8,9], identifying influential spreaders [10], andmany
others. While linear algorithms are applied to a broad range of real systems [11,12], it has been recently shown that the
non-linear fitness–complexity metric introduced in Ref. [5] markedly outperforms linear metrics in ranking the nodes by
their importance in bipartite networks that exhibit a nested architecture [7,13]. The fitness–complexity metric has been
originally introduced to rank countries and products in world trade according to their level of competitiveness and quality,
respectively [5]. The basic idea of the metric is that while the competitiveness of a country is mostly determined by the
diversification of its exports, the quality of a product is mostly determined by the score of the least competitive exporting
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countries. The metric has been shown to be economically well-grounded [5,14], to be highly effective in ranking countries
and products by their importance in the network [13], to be informative about the future economic development [15] and
the future exports of a country [16]. The metric has been recently applied beyond its original scope and has been shown to
be the most efficient method among several network-based methods in ranking species according to their importance in
mutualistic ecological networks [7]. In particular, themetric reveals the nested structure of the systemmuch better than the
methods used by standard nestedness calculators. Several real systems exhibit a nested structure [5,17–21], which suggests
that the metric has a potentially broad range of application.

Despite the relevance of the fitness–complexity metric for nested networks, its mathematical properties and its variants
remain largely unexplored. In contrast with linear algorithms such as Google’s PageRank [22,11,12] and the method of
reflections [23], the convergence properties of the metric cannot be studied through linear algebra techniques. This article
provides new insights into themathematics behind themetric.We study here both the fitness–complexitymetric (FCM) and
anovel variant, calledminimal extremalmetric (MEM), that is simpler to be treated analytically. The only input of themetrics
is the binary adjacency matrix M of the underlying bipartite network; we perform here exact computations for perfectly
nested matrices, i.e., binary matrices such that a unique border separates all the elements equal to one from the elements
equal to zero. For both the MEM and the FCM, we find the exact analytic formulas that relate the ratios of node scores to
the shape of the underlying nested matrix. While real nested matrices are not perfectly nested, the expressions derived
here for perfectly nested matrices explain the non-trivial convergence properties the metrics found in real matrices [24]. In
particular, we analytically determine the condition such that all node scores converge to a nonzero value, which is crucial
for the discriminative power of the metrics. This condition has been also found in Ref. [24] (the only previous work that
studied the convergence properties of the FCM); differently from the analytic study of Ref. [24] where exact formulas were
derived for matrices with two values of node score, in this work we derive by mathematical induction expressions valid for
any perfectly nested matrix.

Finally, we contrast the twometrics in real data and show that theMEMcan outperform the FCM in packing the adjacency
matrix, i.e., ordering its rows and columns in such a way that a sharp curve separates the occupied and empty regions of the
matrix [7]. On the other hand, theMEM ismore sensitive to noisy data, and, as a consequence, its rankingsmay be unreliable
in the presence of a significant amount of mistakes in the original data [25].

This article is organized as follows: In Section 2, we define the Fitness–Complexity metric (FCM) and the Minimal
Extremal Metric (MEM); In Section 3, we analytically compute the ratios between MEM and FCM node scores for perfectly
nested matrices and discuss the dependence of the metrics’ convergence properties on the shape of the nested matrix; In
Section 4, we compare the rankings by the FCM and the MEM in real data of world trade.

2. Non-linear metrics for bipartite networks

In this section, we define the fitness–complexity metric (FCM) and the minimal extremal metric (MEM) for bipartite
networks. While the results obtained in this paper hold for any nested matrix, we use here the terminology of economic
complexity: rows and columns of the N ×M adjacencymatrixM are referred to as countries and products, respectively; the
matrix M is consequently referred to as the country–product matrix [4]. We label countries by Latin letters (i = 1, . . . ,N),
products by Greek letters (α = 1, . . . ,M); the number of countries and products are denoted by N and M , respectively.
The number of products exported by country i and the number of countries that export product α are referred to as the
diversification Di of country i and the ubiquity Uα of product α, respectively [4].

In the fitness–complexity metric (FCM), the fitness scores F = {Fi} of countries and complexity scores Q = {Qα} of
products are defined as the components of the fixed point of the following non-linear map [5]

F̃ (n)
i =


α

MiαQ (n−1)
α ,

Q̃ (n)
α =

1
i

Miα
1

F (n−1)
i

,
(1)

where scores are normalized after each step n according to

F (n)
i = F̃ (n)

i / F (n),

Q (n)
α = Q̃ (n)

α /Q (n),
(2)

with the initial condition F (0)
i = 1 and Q (0)

α = 1.
Eq. (1) implies that the largest contribution to the complexity Q of a product α is given by the fitness of the least-fit

exporter of product α. On the other hand, also the fitness scores of the other exporting countries contribute to Qα; in this
sense, the FCM is a quasi-extremal metric [14]. A natural question arises: how would the rankings change when modifying
Eq. (1), without changing the main idea behind the metric? A generalized version of the metric where the harmonic terms
1/F are replaced by 1/F γ , with γ > 0, has been introduced in Ref. [24] and studied in Refs. [24,13]. Here, we introduce
a simpler variant of the algorithm, called minimal extremal metric (MEM), where the complexity of a product is equal to
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Fig. 1. Illustration of the geometrical meaning of the variables D, d, e in a 10 × 20 perfectly nested matrix. In this example, there are m = 5 groups
of countries, which correspond to the diversification values d1, . . . , d5 , and m = 5 groups of products, which correspond to the ubiquity values
N,N − e1, . . . ,N − e4 . Due to the perfectly nested structure of the matrix, the groups of countries and products are in one-to-one correspondence:
the countries that belong to group i are the least-fit exporters of the products belonging to group i, i.e., of the products whose ubiquity is N − ei−1 .

the fitness of the least-fit country that exports product α. This metric is extremal, which means that only mini:Miα=1{F
(n)
i }

contributes to Qα . In formulas

F̃ (n)
i =


α

MiαQ (n−1)
α ,

F (n)
i = F̃ (n)

i /F (n),

Q (n)
α = min

i:Miα=1
{F (n)

i }.

(3)

Note that the generalized FCM studied in Ref. [13] reduces to the MEM in the limit γ → ∞.

3. Analytic results

3.1. Perfectly nested matrix

We focus here on perfectly nested matrices [26], i.e., binary matrices where each country exports all those products
that are also exported by the less diversified countries plus a set of additional products. Perfectly nested matrices are also
known as stepwise matrices [27], and networks with a perfectly nested adjacency matrix are also referred to as threshold
networks [28]. An example of perfectly nested matrix is shown in Fig. 1. In the following, we label countries and products
in order of increasing diversification (Di+1 ≥ Di) and decreasing ubiquity, respectively (Uα+1 ≤ Uα). We denote by
∆i := Di − Di−1 the number of additional products that are exported by country i but not by country i − 1, with ∆1 = D1.

According to Eqs. (1) and (3), countries with the same level of diversification have the same fitness score, and it is
thus convenient to group them together. By doing this, we obtain m groups of countries, with m ≤ N; we denote by di
the diversification of countries that belong to group i, where groups are labeled in order of increasing diversification and
i = 1, . . . ,m. In addition, we denote by ei the number of countries whose diversification is smaller or equal than di. This
notation will turn out to be useful for the computations for the FCM.We also define the number δi := di − di−1 of additional
products that are exported by countries that belong to group i but not by those belonging to group i − 1, and the number
ϵi := ei − ei−1 of countries that belong to group i (i = 1, . . . ,m, and e0 = d0 = 0). Also products are divided into m groups
according to their level of ubiquity. Since the number of country and product groups are the same and are equal to m, we
use Latin letters (i = 1, . . . ,m) to label both groups. Product groups are labeled in order of decreasing ubiquity; we denote
by ui = N − ei−1 the ubiquity of the products that belong to group i. The geometrical interpretation of the variables d,D, e
is shown in Fig. 1. Note that country and product groups are in one-to-one correspondence: countries that belong to group
i are the least-fit exporters of the products that belong to group i.

3.2. Results for the MEM

For a perfectly nested matrix, the fitness of a country i + 1 at iteration n is given by the fitness of country i at iteration
n, plus the complexity of the additional products that are exported by country i + 1 but not by country i; for the MEM, this
property reads

F̃ (n+1)
i+1 = F (n+1)

i + F (n)
i+1 × ∆i+1, (4)

where F (n)
i+1 is the complexity of the additional products. Our aim is to compute the ratios between the fitness scores. We

start by considering the two least-fit countries and compute the ratio F (n+1)
1 /F (n+1)

2 between their scores. Since we are only
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interested in the ratios between the fitness values, we do not normalize the variables F ,Q in the computation; we have then
F (n)
1 = ∆n

1 and, starting from Eq. (4)

F̃ (n+1)
2 = F (n+1)

1 + ∆2 × F (n)
2

= F (n+1)
1 + ∆2 × (F (n)

1 + ∆2 × F (n−1)
2 )

= F (n+1)
1 + ∆2 × F (n)

1 + ∆2
2 × (F (n−1)

1 + ∆2 × F (n−2)
2 )

= ∆n+1
1 + ∆2 × ∆n

1 + ∆2
2 × ∆n−1

1 + · · · + ∆n
2 × ∆1, (5)

which can be rewritten as

F (n+1)
1

F (n+1)
2

=
1

1 +
∆2
∆1

+


∆2
∆1

2
+ · · · +


∆2
∆1

n . (6)

If ∆1 = ∆2,

F (n+1)
1

F (n+1)
2

=
1

n + 1
−→
n→∞

0 : (7)

the ratio converges to zero as 1/n. The ratio converges to zero also if ∆2 > ∆1, but with an exponential rate:

F (n+1)
1

F (n+1)
2

≃


∆1

∆2

n

−→
n→∞

0. (8)

By contrast, using the geometric series we can show that the ratio is finite if ∆2 < ∆1:

F (n+1)
1

F (n+1)
2

−→
n→∞

1 −
∆2

∆1
. (9)

Interestingly, the three different asymptotic behaviors (7)–(9) correspond to the asymptotic behaviors found in Ref. [24] for
the FCM fitness scores with a model matrix where there are only two values F1 and F2 of fitness score. We will now use this
result as the starting point of a rigorous derivation of the analytic expression for the fitness ratios in an arbitrary perfectly
nested matrix.

First, we note that Eqs. (9) and (8) can be summarized as

lim
n→∞

F (n)
1

F (n)
2

= 1 −
∆2

max{∆1, ∆2}
. (10)

Starting from Eq. (4) and using mathematical induction, we can show that (see Appendix A)

lim
n→∞

F (n)
i

F (n)
i+1

= 1 −
∆i+1

max
j∈[1,i+1]

{∆j}
. (11)

Note that Eq. (11) relates the score ratios F (n)
i /F (n)

i+1 to the shape of the perfectly nested matrix, which is encoded in the set
of the ∆ values. Eq. (11) implies that for any perfectly nested matrix M, all MEM fitness scores converge to a nonzero value
if and only if ∆i < ∆1 ∀ i > 1. If the gap ∆i+1 between the diversifications of countries i and i + 1 is the largest gap among
the gaps ∆j of the countries j ≤ i+ 1, then the ratio between the score of country i and the score of country i+ 1 converges
to zero. The derivation of Eq. (11) is a first example of how the behavior of non-linear metrics can be completely understood
for perfectly nested matrices; in the next section, we will derive an analogous expression for the FCM.

Eq. (11) suggests that for a matrix that is not too different from a perfectly nested matrix, the score ratios could be used
to assess the convergence of the metric. In particular, one can decide to halt iterations when the following criterion is met:

N−1
i=1

 F (n)
i

F (n)
i+1

−
F (n+1)
i

F (n+1)
i+1

 < ϵ, (12)

where ϵ is a predefined accuracy threshold. We refer to Appendix E for the results of the application of this criterion to real
data, and to Appendix F for a numerical study of the dependence of the convergence iteration on the size of the system. As
first suggested by Ref. [24], if some score ratios converge to zero, countries can be naturally separated in different groups
for which all fitness ratios converge to a nonzero value within a set. We refer to Appendix G for a real example from world
trade of country separation implied by the existence of zero fitness ratios.
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3.3. Results for the FCM

The FCM score of a certain product is determined by the scores of all the exporting countries, which makes the analytical
computations for the FCM more difficult than those for the MEM. For the computations with the FCM, it is convenient to
group together countries with the same level of diversification. In agreement with the definitions provided in paragraph
3.1, we denote by fi the fitness of countries that belong to group i, i.e., of those countries whose diversification is equal to di.
Analogously, we denote by qi the complexity of the products whose least-fit exporting countries belong to group i. We have
thenm fitness scores {f (n)

1 , . . . , f (n)
m } and m complexity scores {q(n)

1 , . . . , q(n)
m }. With this notation, we rewrite Eq. (1) as

f̃ (n)
i =

i
j=1

δj q
(n−1)
j ,

q̃(n)
i =

1
m
j=i

ϵj/f
(n)
j

,
(13)

where in the r.h.s. of the second line we replaced 1/f (n−1)
j with 1/f (n)

j , which does not affect the results in the limit n → ∞.
Note that in the r.h.s. of the second line, the factor ϵj of the terms 1/f (n)

j represents the number of countries that belong to
group j. Nowwe transform Eq. (13) into a set of equivalent equations for the fitness ratio x(n)

i := f (n)
i /f (n)

i+1 and the complexity
ratio y(n)

i := q(n)
i /q(n)

i+1. The equation that relates the scores of two consecutive countries i and i + 1 is

f (n+1)
i+1 = f (n+1)

i + q(n)
i+1 × δi+1. (14)

In terms of the x variables, Eq. (14) is equivalent to

1

x(n)
i

= 1 +
δi+1 q

(n−1)
i+1

f̃ (n)
i+1

, (15)

which implies

1/x(n)
i − 1

1/x(n)
i−1 − 1

=
δi+1

δi

x(n)
i−1

y(n−1)
i

; (16)

reshuffling the terms of this equation, we get

x(n)
i =

δi y
(n−1)
i

δi y
(n−1)
i + δi+1 (1 − x(n)

i−1)
. (17)

For the least-fit country (i = 1), from Eq. (15) we directly obtain

x(n)
1 =

δ1 y
(n−1)
1

δ1 y
(n−1)
1 + δ2

. (18)

Starting from the second line of Eq. (13) and proceeding in a similar way, we obtain the analogous equations for the y
variable:

y(n)
i =

ϵi+1x
(n)
i

ϵi+1x
(n)
i + ϵi(1 − y(n)

i+1)
(19)

and

y(n)
m−1 =

ϵmx
(n)
m−1

ϵmx
(n)
m−1 + ϵm−1

. (20)

The set formed by Eqs. (17), (18), (19), (20) is exactly equivalent to the original fitness–complexity equations (Eq. (13)). The
uniform initial condition f (0)

i = 1∀i implies the initial conditions

x(0)
i = 1, (21)

y(0)
i =

em − ei
em − ei−1

(22)

for the variables x and y. Using Eqs. (17)–(20), we prove the following lemma:

Lemma 1 (Convergence). The sequences {x(n)
i } and {y(n)

i } are convergent in the limit n → ∞.
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Proof. To prove the convergence, we first prove that the sequences {x(n)
i } and {y(n)

i } are decreasing in n. From Eq. (18), we
have

x(1)
1 =

δ1 y
(1)
0

δ1 y
(1)
0 + δ2

< 1 = x(0)
1 ; (23)

by combining inequality (23) with Eq. (17), we get x(1)
2 < x(0)

2 ; we can repeat the same for all i and get

x(1)
i < x(0)

i ∀i. (24)

Analogously, by combining inequality (24) with Eq. (20) we get y(1)
m−1 < y(0)

m−1, from which we can iteratively show that

y(1)
i < y(0)

i ∀i. (25)

Now, we use mathematical induction on n to prove that x(n+1)
i < x(n)

i and y(n+1)
i < y(n)

i , for all i = 1, . . . ,m − 1. Suppose
that x(n)

i < x(n−1)
i and y(n)

i < y(n−1)
i . From Eq. (18), the former inequality directly implies

x(n+1)
1 =

δ1 y
(n)
1

δ1 y
(n)
1 + δ2

<
δ1 y

(n−1)
1

δ1 y
(n−1)
1 + δ2

= x(n)
1 . (26)

To prove the inequality x(n+1)
i < x(n)

i for all i, we use mathematical induction on i. To do this, we show that x(n+1)
i−1 < x(n)

i−1

implies x(n+1)
i < x(n)

i . We obtain

x(n+1)
i =

δi y
(n)
i

δi y
(n)
i + δi+1 (1 − x(n+1)

i−1 )
<

δi y
(n−1)
i

δi y
(n−1)
i + δi+1 (1 − x(n+1)

i−1 )
<

δi y
(n−1)
i

δi y
(n−1)
i + δi+1 (1 − x(n)

i−1)
= xi, (27)

wherewe used the induction hypothesis on n in the first inequality, and the induction hypothesis on i in the last inequality. A
similar proof can be carried out to get y(n+1)

i < y(n)
i . Since x(n)

i and y(n)
i are decreasing sequences inn and x(n)

i > 0, y(n)
i > 0 ∀n,

then x(n)
i and y(n)

i converge when n → ∞. �

3.3.1. Score ratios when the diagonal does not cross the empty region of M
The lemma ensures the convergence of the non-linear map defined by Eq. (13). We use now the lemma to prove the

theorem that guarantees the convergence of the score ratios to a unique fixed point. The theorem holds when the diagonal
of the matrix does not cross the empty region of the matrix M, i.e., the region whose elements are zero. In formulas, this
condition reads

di > ei
dm
em

∀i = 1, . . . ,m − 1. (28)

We will also discuss then the procedure to compute the fitness ratios when condition (28) is false. We emphasize that
Ref. [24] found this property through an analytic computation on theoretical matrices where two values F1 and F2 of fitness
score are present, conjectured its validity for any nested matrix and verified this hypothesis through numerical simulations
on several datasets. Here, we demonstrate its validity for any perfectly nested matrix.

Theorem 2. If condition (28) holds, then

lim
n→∞

f (n)
i

f (n)
i+1

= ai, (29)

lim
n→∞

q(n)
i

q(n)
i+1

= bi, (30)

where

ai =
di − dm

em
ei

di+1 −
dm
em

ei
, (31)

bi =

em
dm

di − ei
em
dm

di − ei−1
. (32)
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Fig. 2. Illustration of the formulas (36)–(37) for computing the score ratios in a 5 × 8 matrix where the diagonal never crosses the empty region of the
matrix. We denote by δij := Dj − Pix the distance between the point Pi where the diagonal of the matrix intersect the line y = i and the line x = Dj . We
have then F3/F4 = δ33/δ43 . Analogously, we denote by ϵij := Riy − Ej the distance between the point Ri where the diagonal of the matrix intersect the line
x = i and the line y = Ej = N − Uj We have then Q6/Q7 = ϵ76/ϵ66 .

We refer to Appendix B for the details of the proof. The components of the limit vectors (a, b) have a simple geometrical
interpretation. To see this, we rewrite Eqs. (29)–(30) in terms of the original variables F ,Q ,D,U:

lim
n→+∞

F (n)
i

F (n)
i+1

=
Di −

M
N i

Di+1 −
M
N i

, (33)

lim
n→+∞

Q (n)
i

Q (n)
i+1

=

N
M i − Ei+1
N
M i − Ei

, (34)

where we defined Ei = N − Ui. In term of the original variables, condition (28) reads

Di >
M
N

i (35)

The solution (33)–(34) has a simple geometric interpretation when considering the representation of the matrix M in the
euclidean plane.

If we denote by Pix the x-coordinate of the point Pi where the diagonal of the matrix — i.e., the diagonal from (0, 0)
to (M,N) — intersects the horizontal line y = i, we have exactly Pix = i M/N (see Fig. 2). As a consequence, assuming
Di > i M/N is equivalent to assuming that the diagonal of the matrix never crosses the empty region of the matrix. Eq. (36)
can thus be rewritten as

Fi
Fi+1

=
Di − Pix

Di+1 − Pix
. (36)

As shown in Fig. 2, the numerator and the denominator can be interpreted as the distances of the point Pi from the vertical
lines x = Di and x = Di+1, respectively. One can also show that condition (35) implies M Ei+1 < i N (i = 1, . . . ,M − 1), If
we denote by Riy the y-coordinate of the point Ri where the diagonal from (0, 0) to (M,N) intersects the line x = i, we have
Riy = i N/M . Eq. (37) can be rewritten as:

Qi

Qi+1
=

Riy − Ei+1

Riy − Ei
, (37)

which has a simple geometrical interpretation as well (see Fig. 2).

3.3.2. Score ratios when the diagonal does cross the empty region of M
If the diagonal of the matrix crosses the empty region of the matrix — i.e., if there exists some i such that di ≤ ei dm/em

— we cannot directly use Eqs. (29), (30). In this case, the procedure to compute the fitness and complexity ratios is the
following:

1. We find the most-fit country jmax such that

Di −
i

jmax
Djmax > 0 ∀ i ≤ jmax. (38)

When considering thematrixM in the euclidean plane, the country jmax corresponds to themost-fit country such that the
diagonal from (0, 0) to (djmax , jmax) never crosses the empty region of the reducedmatrix that contains only the countries
j < jmax, as shown in Fig. 3.
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Fig. 3. Illustration of the procedure for computing the score ratios in a 5 × 8 matrix where the diagonal crosses the empty region of the matrix. In this
case, we have to find the most-fit country jmax such that condition (38) holds. In this example, jmax ≠ 5 and jmax ≠ 4, because the diagonal from (0, 0) to
(dj, j) crosses the empty region of the matrix for j = 4, 5 (left panel). We find jmax = 3. We can then compute the score ratios for all the countries i ≤ 3
and all the products α ≤ d3 = 6. To do this, we use the same geometrical construction of Fig. 2, but restricted to the submatrix that contains only the three
least-fit countries and the d3 most-ubiquitous products, which corresponds to the block delimited by red border in the right panel. We can then remove
from the matrix the countries i ≤ 3 and the products α < d3 = 6. and compute the score ratios for the countries and products in the residual matrix,
which corresponds to the block delimited by orange border in the right panel.

2. Once the value of jmax has been determined, we can compute all the fitness ratios for the countries i < jmax as

Fi
Fi+1

=
Di − iDjmax/jmax

Di+1 − iDjmax/jmax
, (39)

Qi

Qi+1
=

ijmax/Djmax − Ei+1

ijmax/Djmax − Ei
(40)

for all i < jmax, and Fjmax/Fjmax+1 = 0,Qjmax/Qjmax+1 = 0. Note that this formula has the same geometrical interpretation
of Eqs. (29)–(30), but the geometrical construction is carried out in a submatrix of the matrix M (see Fig. 3).

3. We remove from the matrix all the countries i ≤ jmax and all the products α ≤ djmax , and restart from point 1, until all
the ratios are computed.

The interpretation of this procedure is simple: if the diagonal line crosses the empty region of the matrix, there is at least
one pair of countries for which the score ratio converges to zero. In this case, the matrix should be split in blocks such that
the score ratios are all nonzero within each block; the score ratios can then be computed inside each block according to
Eqs. (39)–(40). A graphical illustration of this procedure is shown in Fig. 3.

4. Results in real networks

4.1. Revealing the nested structure of country–product matrices

TheMEMhas been introduced in Section 2 as aminimalmetric based on the same assumptions of the fitness–complexity
metric. In this section, we explore its behavior on real data and compare its rankings with those produced by the FCM. In
real data, the fitness–complexity metric has been used to reveal the nested structure of a given network. This is achieved
by ordering the rows and the columns of the matrix M according to their ranking by the metric [5,7]. In particular, the
fitness–complexity metric outperforms other existing network centrality metrics and standard nestedness calculators in
packing nested matrices [7]. Here, we use the NBER-UN international trade data to compare the matrices produced by the
FCM and the MEM; we refer to Appendix C for a detailed description of the dataset. We show here results for the year 1996;
results for the different years are in qualitative agreement.We first observe that the rankings of countries by the twometrics
are highly correlated (ρ = 0.994), and both country scores are highly correlated with country diversification [ρ = 0.963
for the FCM, ρ = 0.955 for the MEM]. With respect to the matrix produced by the FCM, the matrix produced by the MEM
exhibits a sharper border between the empty and the filled parts of thematrix (see Fig. 4). This result suggests that theMEM
could be used to produce optimally packed matrices for networks that exhibit a nested structure [7]. In agreement with the
convergence criterion introduced in Section 3.2, to obtain the results shown in Fig. 4, we performed 107 and 6700 iterations
for the FCM and the MEM, respectively. We refer to Appendices E and F for more details on the convergence properties of
the two metrics in real and artificial data.

4.2. Sensitivity with respect to noisy input data

An important issue for any data-driven variable is its stability with respect to perturbations in the system [29,25,30].
Following Refs. [25,13], in order to study the robustness of the rankings with respect to noise, we randomly revert a fraction
η of bits in the binary matrix M and compute the Spearman’s correlations of the scores computed before and after the
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Fig. 4. Country–product matrices resulting from the FCM and the MEM (1996). Both matrices are nested, but the border between the filled and the empty
region of the matrix is sharper for the MEM than for the FCM.

Fig. 5. Robustness against noise of the rankings as a function of the fraction η of reverted bits in the matrixM (year 1996). Robustness is measured by the
Spearman’s correlation between the rankings before and after the inversion.

reversal. Fig. 5 shows that the rankings by the FCM are more stable than the rankings by the MEM; the gap between the two
methods is particularly large for the ranking of products. On the other hand, the different robustness of the two methods
is mostly due to the region of the matrix M whose elements correspond to the most complex products and the least-fit
countries. This can be proved by perturbing only the submatrix M(bottom−right) of M that contains the M/2 most complex
products and the N/2 least-fit countries according to the ranking by theMEM, and compare the outcomewith that obtained
whenperturbing only the submatrixM(top−left) that contains theM/2 least-complex products and theN/2most fit countries.
The difference is striking: for M(bottom−right), we find ρ(Q ,Q (0.1)) = 0.420 and ρ(Q ,Q (0.1)) = −0.142 for the FCM and
the MEM, respectively; for M(top−left), we find ρ(Q ,Q (0.1)) = 0.994 and ρ(Q ,Q (0.1)) = 0.999 for the FCM and the MEM,
respectively. These findings indicate that the ranking of products by the MEM is not reliable when the data are subject to
mistakes and noise, as is the case for world trade data [25], and that the major contribution to the ranking instability comes
from the exports of the least-fit countries.

5. Conclusions

Understanding themathematics behind a network-based ranking algorithm is crucial for its real-world applications. This
article moves an important step toward a rigorous understanding of the mathematical properties of the fitness–complexity
metric for nested networks. We exactly computed country and product scores for perfectly nested matrices. Our analytic
findings are in agreement with the analytic and numeric findings of Ref. [24] on the relation between the convergence
properties of the metric and the shape of the underlying nested matrix. We stress again that while we have used the
terminology of economic complexity throughout this work, our findings hold for any network that exhibits a nested
architecture. For the application of the metric to mutualistic networks, only the meaning of the variables change: F and
Q represent active species importance and passive species vulnerability, respectively [7].

In this work, we have also introduced and studied the MEM, a novel variant of the FCM that is simpler to be analytically
treated. Our findings on real data indicate that the MEM can order rows and columns of nested matrices even better than
the FCM. The high correlation between the country scores obtained with the FCM and the MEM suggests that the MEM
and the FCM are similarly informative about the competitiveness of a country in international trade and its future growth
potential [15]. On the other hand, the rankings of products by the MEM turn out to be much less stable under a random
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perturbation in the country–product binary matrix. To conclude, while the MEM can produce more packed nested matrices
with respect to those produced by the FCM, its ranking of products is reliable only for high-quality data.
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Appendix A. Proof of Eq. (11)

Weassume that Eq. (11) holds for i = k, and show that this assumption implies that it holds also for i = k+1. In formulas,
we assume that in the limit n → ∞

F (n)
k

F (n)
k+1

= 1 −
∆k+1

Hk+1
, (A.1)

where Hk+1 = maxj∈[1,k+1]{∆j}, and we want to prove that Eq. (A.1) implies

F (n)
k+1

F (n)
k+2

= 1 −
∆k+2

Hk+2
. (A.2)

Using Eq. (4), we obtain

F (n+1)
k+2

F (n+1)
k+1

=
F (n+1)
k+1 + F (n)

k+2 ∆k+2

F (n+1)
k+1

= 1 +
F (n)
k+2 ∆k+2

F (n+1)
k+1

. (A.3)

We want to express the denominator F (n+1)
k+1 in terms of F (n)

k+1 in order to transform this equation into a recurrence relation

for
F (n)
k+2

F (n)
k+1

. To do this, we use Eq. (4) and obtain

F (n+1)
k+1 = F (n+1)

k + F (n)
k+1 ∆k+1 = F (n)

k+1 ∆k+1


1 +

F (n+1)
k

∆k+1 F
(n)
k+1


= F (n)

k+1 ∆k+1


1 +

F (n+1)
k

F (n+1)
k+1 − F (n+1)

k


. (A.4)

We now use the hypothesis (A.1):

F (n+1)
k+1 = F (n)

k+1 ∆k+1


1 +

F (n+1)
k /F (n+1)

k+1

1 − F (n+1)
k /F (n+1)

k+1


= F (n)

k+1 ∆k+1


1 +

1 − ∆k+1/Hk+1

∆k+1/Hk+1



= F (n)
k+1 ∆k+1


1 +

Hk+1 − ∆k+1

∆k+1


= F (n)

k+1 Hk+1. (A.5)

Plugging Eq. (A.5) into Eq. (A.3) we get

F (n+1)
k+2

F (n+1)
k+1

= 1 +
∆k+2

Hk+1

F (n)
k+2

F (n)
k+1

, (A.6)

Eq. (A.6) is a recurrence equation for
F (n+1)
k+2

F (n+1)
k+1

. We distinguish two cases:

• If ∆k+2
Hk+1

≥ 1, then limn→∞ F (n)
k+2/F

(n)
k+1 = ∞ and limn→∞ F (n)

k+1/F
(n)
k+2 = 0. In this case Hk+2 = ∆k+2 by definition and

Eq. (A.2) (i.e., the thesis) is satisfied.

• If ∆k+2
Hk+1

< 1, then we can find the stationary point x of Eq. (A.6) by posing x =
F (n+1)
k+2

F (n+1)
k+1

=
F (n)
k+2

F (n)
k+1

. We notice that in this case

Hk+2 = Hk+1 and, as a result, we obtain Eq. (A.2).

This proves the thesis.
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Appendix B. Proof of Theorem 2

We denote by (x, y) the pair of vectors that solve Eqs. (17)–(20) in the limit n → ∞, which read

xi =
δi yi

δi yi + δi+1 (1 − xi−1)
, (i = 2, . . . ,m − 1) (B.1)

x1 =
δ1 y1

δ1 y1 + δ2
, (B.2)

yi =
ϵi+1xi

ϵi+1xi + ϵi(1 − yi+1)
, (i = 1, . . . ,m − 2) (B.3)

ym−1 =
ϵmxm−1

ϵmxm−1 + ϵm−1
. (B.4)

To prove that (x, y) = (a, b) is a solution of Eqs. (B.1)–(B.4), it is sufficient to check that an identity is obtained when
replacing xi and yi with ai and bi in Eqs. (B.1)–(B.4). If em di > ei dm, we can easily use mathematical induction to prove that
x(n)
i > ai and y(n)

i > bi for all i = 1, . . . ,m − 1 and n ∈ N. The proof is similar to the proof of Lemma 1. We are then
interested only in solutions of Eqs. (B.1)–(B.4) that satisfies

ai ≤ xi < 1 (B.5)

and

bi ≤ yi <
em − ei

em − ei−1
; (B.6)

solutions that do not satisfy conditions (B.5) and (B.6) cannot be reached through the iterative process defined by
Eqs. (17)–(20), and will not be considered in the following. In the following, always imply conditions (B.5) and (B.6) for
the studied solutions. To show that the solution of Eqs. (B.1)–(B.4) is unique, we use a reductio ad absurdum: we assume
that a different solution x = ã and y = b̃ exists, and show that this assumption leads to an absurd result. Before doing this,
we state two useful properties of the solutions of Eqs. (B.1)–(B.4).

Property 3. For a solution (x, y) of Eqs. (B.1)–(B.4), if there exist an integer j such that xj > aj or yj > bj, then xi > ai and
yi > bi for all i = 1, . . . ,m.

Proof. Suppose that xj > aj for a certain component j. Then

yj =
ϵj+1 xj

ϵj+1 xj + ϵj (1 − yj+1)
>

ϵj+1 aj
ϵj+1 aj + ϵj (1 − yj+1)

≥
ϵj+1 aj

ϵj+1 aj + ϵj (1 − bj+1)
= bj. (B.7)

In a similar way, one can use Eq. (B.1) to prove the thesis for all i > j, and Eq. (B.3) to prove the thesis for all i < j. �

In order to have a solution (ã, b̃) such that ã ≠ a and b̃ ≠ b, there must exist at least one component j such that ãj ≠ aj
or b̃j ≠ bj; from the inequalities (B.5)–(B.6) and Property 3, we also have ai < ãi < 1 or bi < b̃i < (em − ei)/(em − ei−1) for
i = 1, . . . ,m.

Property 4. If yi > 0∀i = 2, 3, . . . ,m − 1, for each solution (x, y) of Eqs. (B.1)–(B.4), the value of ym−1 uniquely determines
the values of all the other components {xi}m−1

i=1 and {yi}m−2
i=1 of the solution. On the other hand, ym−1 is uniquely determined by the

other components {xi}m−1
i=1 and {yi}m−2

i=1 of the solution.

Proof. The former statement of the Property follows from the fact that if yi ≠ 0∀i = 2, . . . ,m − 1 and we know the
last component ym−1 of the solution, we can then compute all the other components of the solution and they uniquely
depend on ym−1. Suppose indeed that we know the value of ym−1. We can then invert Eq. (B.4) and compute xm−1 =

ϵm−1ym−1/ϵm(1 − ym−1), and then plug the obtained xm−1 value into Eq. (B.1) to compute xm−2, and then plug the obtained
xm−2 into Eq. (B.3) to compute ym−2, and so on. The latter statement follows from Property 3 (or equivalently, from the
invertibility of all the relations involved in Eqs. (B.1)–(B.4)). �

As a consequence of this property, proving that the solution (x, y) = (a, b) is unique is equivalent to proving that for a
solution, the only acceptable value of ym−1 is ym−1 = bm−1.

We will now prove the theorem in two steps:

1. We transform Eqs. (B.1)–(B.4) into a set of equations, hereafter referred to as the transformed equations.
2. We use a reductio ad absurdum and assume that there exists a solution y = b̃ of the original equations such that

b̃N−1 > bN−1. We use then the transformed equations to show that the solution y = b̃ cannot be a solution of the
original equations, which proves the thesis.
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B.1. Step 1: Deriving a set of transformed equations

First, we merge the equations (B.1)–(B.4) into two equations

xi =
yi

yi +
δi+1
δi

(1 − xi−1)
, (i = 1, . . . ,m − 1) (B.8)

yi =
xi

xi +
ϵi

ϵi+1
(1 − yi+1)

, (i = 1, . . . ,m − 1) (B.9)

with x0 = 0 and ym = 0. Consider a generic solution (x̄, ȳ) of Eqs. (B.8)–(B.9). Instead of the variables {x1, . . . , xm−1} and
{y1, . . . , ym−1}, we consider the transformed variables {x′

1, . . . , x
′
m} and {y′

1, . . . , y
′
m} defined by the transformation

x′

i = xi−1 for i = 2, . . . ,m;

y′

i = yi−1 for i = 2, . . . ,m.
(B.10)

We consider the transformed equations

x′

i =
y′

i

y′

i +
δ′
i+1
δ′
i

(1 − x′

i−1)

, (i = 1, . . . ,m), (B.11)

y′

i =
x′

i

x′

i +
ϵ′
i

ϵ′
i+1

(1 − y′

i+1)
, (i = 1, . . . ,m), (B.12)

with x′

0 = 0 = y′

m+1 = 0, δ′

i = δi−1 and ϵ′

i = ϵi−1 for i = 2, . . . ,m + 1. In the transformed equations, x′

1 and y′

1 are
new variables; for a solution (x̄, ȳ) of Eqs, (B.8)–(B.9), the pair of transformed vectors (x̄′, ȳ′) satisfies the following set of
transformed equations only if x̄′

1 = ȳ′

1 = 0 for a solution (x̄, ȳ). The values of δ′

1 and ϵ′

1 only affect the values of x′

1 and y′

1,
which must be equal to zero for the transformed (x̄′, ȳ′) of a solution (x̄, ȳ) of the original equations. This allows us to let
δ′

1 and ϵ′

1 be arbitrary parameters in the Eqs. (B.11)–(B.12). Eqs. (B.11)–(B.12) have the same form of Eqs. (B.8)–(B.9). It is
possible to show by substitution that a possible solution of Eqs. (B.11)–(B.12) is

x̄′

i =
e′

m+1 d
′

i − e′

i d
′

m+1

e′

m+1 d
′

i+1 − e′

i d
′

m+1
, (B.13)

ȳ′

i =
e′

m+1 d
′

i − e′

i d
′

m+1

e′

m+1 d
′

i − e′

i−1 d
′

m+1
, (B.14)

where d′

i = δ′

1 +
i

j=2 δ′

j and e′

i = ϵ′

1 +
i

j=2 ϵ′

j . The mth component of this solution is

ȳ′

m =
e′

m+1d
′
m − e′

md
′

m+1

e′

m+1d′
m − e′

m−1d
′

m+1
=

(ϵ′

1 + em)(δ′

1 + dm−1) − (ϵ′

1 + em−1)(δ
′

1 + dm)

(ϵ′

1 + em)(δ′

1 + dm−1) − (ϵ′

1 + em−2)(δ
′

1 + dm)
. (B.15)

We are interested in the solutions (x̄′, ȳ′) of Eqs. (B.11)–(B.12) such that (x̄, ȳ) is solution of Eqs. (B.8)–(B.9), where the
transformation (x̄′, ȳ′) → (x̄, ȳ) is given by Eq. (B.10). We can then pose ȳ′

m = ȳm−1 and ϵ′

1 = 1, and obtain

δ′

1 =
(1 + em) δm (1 − ȳm−1)

ϵm − (ϵm + ϵm−1) ȳm−1
− dm. (B.16)

B.2. Step 2: Reductio ad absurdum

Up to now, we have proven for a solution (x̄′, ȳ′) of the Eqs. (B.11)–(B.12) in the form given by Eqs. (B.13)–(B.14), the
pair of vectors (x̄, ȳ) obtained by the transformation (B.10) is a solution of Eqs. (B.8)–(B.9) if and only if x̄′

1 = ȳ′

1 = 0, δ′

1
satisfies Eq. (B.16) and ϵ′

1 = 1. We will now show that if we consider a solution of the transformed equations such that
ȳ′
m = b̃′

m = b̃m−1 > bm−1 and assume that (ã, b̃) is a solution of the original equations, then the first component ã′

1 of the
solution is different from zero, which is absurd. As a consequence, (x̄, ȳ) = (a, b) is the only solution of Eqs. (B.8)–(B.9).

Proof. We assume that there exists a solution ȳm−1 = b̃m−1 > bm−1; from Property 4, all its components (ã, b̃) are uniquely
determined by b̃m−1. Using the solution (B.13)–(B.14) of the transformed equations, from b̃m−1 > bm−1 and Eq. (B.16) it
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follows that δ′

1 > dm/em. To prove the thesis, we start by showing that e′

m+1 d
′

i > e′

i d
′

m+1. For i = 2, 3, . . . ,m, we have

e′

m+1d
′

i − e′

id
′

m+1 = (1 + em)(di−1 + δ′

1) − (1 + ei−1)(δ
′

1 + dm)

= (1 + em)di−1 + (em − ei−1)δ
′

1 − (1 + ei−1)dm

> (1 + em)
ei−1

em
dm + (em − ei−1)

dm
em

− (1 + ei−1)dm = 0.

For i = 1, e′

m+1d
′

1 = δ′

1 + emδ′

1 > δ′

1 + dm = d′

m+1 = e′

1d
′

m+1, which implies e′

m+1d
′

i > e′

id
′

m+1 for all i = 1, 2, . . . ,m; as a
consequence, a′

1 > 0, which is absurd. �

Appendix C. The dataset

We use the NBER-UN dataset which has been cleaned and further described in Ref. [31]. We take into account the same
list ofN = 132 countries described in Ref. [32]. For products, we used the same cleaning procedure of Ref. [16]: we removed
aggregate product categories and products with zero total export volume for a given year and nonzero total export volume
for the previous and the following years. Products and countries with no entries after year 1993 have been removed as well.
After the cleaning procedure, the dataset consists ofM = 723 products. To decide if we consider country i to be an exporter
of product α or not, we use the Revealed Comparative Advantage (RCA) [33] which is defined as

RCAiα =
eiα

β

ejβ


j
ejα

jβ
ejβ

, (C.1)

where eiα is the volume of product α that country i exports measured in thousands of US dollars. RCA characterizes the
relative importance of a given export volume of a product by a country in comparison with this product’s exports by all
other countries. We use the bipartite network representation introduced in Ref. [4], where two kinds of nodes represent
countries and products, respectively. All country–product pairs with RCA values above a threshold value – set to 1 here –
are consequently joined by links between the corresponding nodes in the bipartite network.

Appendix D. Spearman’s correlation coefficient ρ

Given two variables X = {X1, . . . , Xn} and Y = {Y1, . . . , Yn}, we rank them in decreasing order and denote by
x = {x1, . . . , xn} and y = {y1, . . . , yn} their corresponding ranking scores. Equal scores are assigned equal ranking positions
given by their average ranking position: for instance, if the fourth and the fifth scores in the ranking are equal to each other,
then they are both assigned ranking score equal to (4 + 5)/2 = 4.5. The Spearman’s correlation coefficient ρ(X, Y) is then
defined as the linear correlation coefficient between the ranking scores, which reads [34]

ρ(X, Y) =

n
i=1

(xi − x)(yi − y)
n

i=1
(xi − x)2

n
i=1

(yi − y)2
, (D.1)

where x = n−1n
i=1 xi denotes the mean of x.

Appendix E. Convergence of the metrics in real data

In a perfectly nested matrix, the score ratios converge to a finite value both for the MEM (Eq. (11)) and for the FCM
(Eq. (39)).While realmatrices are not perfectly nested, one can conjecture that if thematrix is not too sparse, the convergence
behavior of a real matrix will be similar. Motivated by this assumption, we define a convergence criterion based on the score
ratio, and decide to halt iterations when the following criterion is satisfied

d(n)
=

N−1
i=1

 F (n)
i

F (n)
i+1

−
F (n+1)
i

F (n+1)
i+1

 < ϵ = 10−5. (E.1)

For the country–product matrix shown in Fig. 4, condition (E.1) is satisfied after 107 and 6700 iterations for the FCM and
the MEM, respectively (see Fig. E.6). For the FCM, we find that no fitness ratios converge to zero. This is in agreement with
our analytic results (see condition (28)) and with the results of Ref. [24], since the diagonal of the matrix never crosses the
empty region of the matrix, as shown in the left panel of Fig. 4. For the MEM, we find that three fitness ratios converge to
zero,1 which slows down the convergence of the metric.

1 We checked that the MEM fitness scores that were converging to zero were still larger than zero after 6700 iterations.
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Fig. E.6. d(n) as a function of the iteration number for the country–product matrix represented in Fig. 4.

Fig. F.7. Convergence iteration n∗ as a function of size N for artificial matrices generated according to Model A described in Appendix F.

Appendix F. Dependence of the convergence iteration of the metrics on network size

In this section, we build artificial nested matrices to study the dependence of the convergence iteration of the metrics
on network size. The convergence iteration n∗ is defined as the smallest iteration such that condition (E.1) holds. We focus
on perfectly nested matrices where the diagonal never crosses the empty region of the matrix, as is the case for the real
matrix showed in Fig. 4. We label the countries in order of increasing diversification and the products in order of decreasing
ubiquity. To generate the matrices, we use two models:

• Model A: This model has a single parameter α which determines the shape of the matrix. In order to have the same ratio
M/N as in the real data fromworld trade analyzed in themain text, we setM = 5.48N . For country i, we fill the elements
corresponding to products α ∈ [1, 1 + ⌊M iα/Nα

⌋], where α is a parameter of the matrix that determines the shape of
the border which separates the empty and the filled regions of the matrix, and ⌊x⌋ denotes the largest integer smaller or
equal than x. We restrict our analysis to α < 1 which corresponds to matrices for which the diagonal does not cross the
empty region.

• Model B: This model has four parameters x, α, k1, k2 which determine the shape of the matrix. Fig. F.8 shows an
illustration of a matrix produced with model B. Country 1 has diversification equal to x + k1. For the countries i ∈

[2, ⌊α (N − 1)⌋], di+1 = di + k1 holds; for the remaining countries, di+1 = di + k2 holds. For each value of N , the number
of productsM is determined by the parameters of the model.

Within this framework, we can study the dependence of the convergence speed of the metrics on network size for a
given shape of the matrix’s border. For Model A, we find that the convergence speed of the MEM does not strongly depend
on system size, as opposed to the convergence speed of the FCMwhich grows approximately as log(N) for sufficiently large
N (see Fig. F.7). For Model B, we find again a logarithmic growth of the convergence iteration for the FCM for sufficiently
large N , whereas the behavior of the MEM can be very different with respect to that found for Model A (see Fig. F.9). In
particular, for some parameter settings the convergence of theMEM is slower than that of the FCM, as found in the real data.
Figs. F.7 and F.9 indicate that the convergence behavior of the MEM is strongly dependent on the details of the border of the
matrix M, as opposed to the FCMwhich always exhibit asymptotic logarithmic dependence of n∗ on N . We did not attempt
to investigate the convergence behavior of themetric on alternativematrix models. We envision that suitablemodifications
of the equations that define the twometrics wouldmitigate the dependence of convergence speed on system size; however,
designing new metrics with improved convergence properties goes beyond the scope of this article.
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Fig. F.8. An illustration of model B described in Appendix F.

Fig. F.9. Convergence iteration n∗ as a function of size N for artificial matrices generated according to Model B described in Appendix F and illustrated in
Fig. F.7. The panels show that for the MEM, the dependence of convergence speed on system size strongly depends on the parameters chosen to construct
the matrix.

Appendix G. Dividing the matrix M into submatrices based on fitness ratio

When some fitness score ratios converge to zero, the matrix M can be separated into different groups of countries
such that the score ratios between countries within the same group are always larger than zero. For the FCM, one or more
fitness ratios converge to zero when the diagonal of the matrix crosses the empty region of the matrix M (see Section 3.3.2
and Ref. [24]). For the MEM and for a perfectly nested matrix M, one or more fitness ratios converge to zero when the
diversification gap between two countries i + 1 and i is equal or larger than the maximum diversification gap of the lower
ranked countries, as directly results from Eq. (11). While the criterion for the MEM is not directly applicable to real matrices
that are not perfectly nested, we empirically observe in the dataset used for Fig. 4 that the fitness ratios of two pairs of
countries converge to zero. As suggested in Ref. [24], we can then separate the countries into three groups such that the
fitness ratios are nonzero between any two countries that belong to the samegroup. The three resulting groups are composed
of 103, 2 and 27 countries, respectively (see Fig. G.10, left panel). The right panel of Fig. G.10 shows that the separation of
countries into different groups is signaled by discontinuous jumps in the relation between countryMEM fitness and country
diversification D, which happens for D < 100. We emphasize that while the deviation between the trends observed for the
FCM and the MEM is relatively small for highly diversified countries, it becomes wide for little diversified countries, which
might be relevant for the study of the economic complexity dynamics of developing countries [15].
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Fig. G.10. Left: Country–product matrix resulting from the MEM (1996); horizontal and vertical blue lines separate groups of countries and products,
respectively. Right: Country fitness score F vs. diversification D for the FCM and the MEM (1996).
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