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Correspondence
Spectral Measure of Structural

Robustness in Complex Networks

Jun Wu, Mauricio Barahona, Yue-Jin Tan, and Hong-Zhong Deng

Abstract—We introduce the concept of natural connectivity as a mea-
sure of structural robustness in complex networks. The natural connec-
tivity characterizes the redundancy of alternative routes in a network
by quantifying the weighted number of closed walks of all lengths. This
definition leads to a simple mathematical formulation that links the natural
connectivity to the spectrum of a network. The natural connectivity can
be regarded as an average eigenvalue that changes strictly monotonically
with the addition or deletion of edges. We calculate both analytically and
numerically the natural connectivity of three typical networks: regular
ring lattices, random graphs, and random scale-free networks. We also
compare the proposed natural connectivity to other structural robustness
measures within a scenario of edge elimination and demonstrate that
the natural connectivity provides sensitive discrimination of structural
robustness that agrees with our intuition.

Index Terms—Complex networks, graph spectra, natural connectivity,
structural robustness.

ACRONYM

ER Erdös–Rényi.
SF Scale free.
BA Barabási–Abert.

NOTATION

G (V,E): simple undirected graph.
V Set of vertices.
E Set of edges.
N Number of vertices.
M Number of edges.
di Degree of vertex vi.
dmin Minimum degree.
dmax Maximum degree.
A(G) Adjacency matrix of G.
nk Number of closed walks of length k.
S Weighted sum of numbers of closed walks.
λj jth largest eigenvalue of A(G).
λ̄ Natural connectivity.
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ρ(λ) Spectral density.
Mλ(t) Moment-generating function of ρ(λ).
G+ ε Graph obtained by adding an edge ε to G.
n̂k Number of closed walks of length k in G+ ε.
n̂′
k Number of closed walks of length k in G+ ε with ε.

n̂′′
k Number of closed walks of length k in G+ ε

without ε.
RN,2K 2K-regular ring lattice with N vertices.
In Modified generalized Bessel functions.
CN Cycle graph with N vertices.
GN,p ER random graph with N vertices and edge density p.
R Radius of the bulk of the spectrum.
〈k〉 Average degree.
p(k) Degree distribution.
γ Scale exponent.
wi Expected degree of vertex vi.
d̃ Second-order average degree.
κV (G) Vertex connectivity of G.
κE(G) Edge connectivity of G.
a(G) Algebraic connectivity of G.
fR
c Critical removal fraction of vertices under random failure.
κ Criterion for the disintegration of networks.

I. INTRODUCTION

We are surrounded by networks. Networks with complex topology
describe a wide range of systems in nature and society. Examples
include the Internet, metabolic networks, electric power grids, supply
chains, urban road networks, and the world trade Web among many
others. In the past few years, the discovery of small-world [1] and
SF properties [2] has stimulated a great deal of interest in studying
the underlying organizing principles of various complex networks.
The study of complex networks has become an important area of
multidisciplinary research involving physics, mathematics, biology,
social sciences, informatics, and other theoretical and applied sciences.

The function and performance of complex networks rely on their
structural robustness, i.e., the ability to endure threats and survive
accidental events. For example, modern society is dependent on its
critical infrastructure networks: communication, electrical power, rail,
and fuel distribution networks. Failure of any of these critical in-
frastructure networks can bring the ordinary activities of work and
recreation to a standstill. Other examples of structural robustness
arise in biological and social systems, including questions such as the
stability of social organizations in the face of famine, war, or even
changes in social policy. The structural robustness is an important
factor that influences the network reliability [3]–[6]. Due to their broad
range of applications, the structural robustness has become a central
topic in complex networks and receives growing attention [7]–[12].

A simple and effective measure is essential for the study of structural
robustness. Early measures were related to the basic concept of graph
connectivity [13]. Vertex (edge) connectivity, defined as the size of the
smallest vertex (edge) cut, determines the structural robustness of a
graph to the deletion of vertices (edges) in the sense of preservation
of its global connectedness. However, the vertex or edge connectivity
only partly reflects the ability of graphs to retain certain degree of
connectedness under deletion. Other improved measures were
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TABLE I
CHARACTERISTICS OF EXISTING MEASURES

OF STRUCTURAL ROBUSTNESS

introduced and studied, including super connectivity [14], conditional
connectivity [15], fault diameter [16], toughness [17], scattering num-
ber [18], tenacity [19], expansion parameter [20], and isoperimetric
number [21]. In contrast to vertex (edge) connectivity, these new
measures consider both the cost of damaging a network and the
extent to which the network is damaged. Unfortunately, from an
algorithmic point of view, the problem of calculating these measures
for general graphs is nondeterministic polynomial-time hard problem.
This implies that these measures are of no great practical use in the
context of complex networks.

Another remarkable measure to unfold the structural robustness of
a network is the second smallest eigenvalue of the Laplacian matrix,
also known as the algebraic connectivity. Fiedler [22] showed that the
magnitude of the algebraic connectivity reflects how well connected
the overall graph is, i.e., the larger the algebraic connectivity is, the
more difficult it is to cut a graph into independent components. For
a survey of the vast literature on algebraic connectivity, see [23].
However, the algebraic connectivity is too coarse a measure to capture
important features of structural robustness of complex networks (note,
for instance, that the algebraic connectivity is equal to zero for a
disconnected graph). We discuss it in detail in Section IV.

An alternative formulation of structural robustness within the con-
text of complex networks emerged from the random graph theory [24]
and was stimulated by the work of Albert et al. [25]. Instead of a strict
extremal property, they proposed a statistical measure, i.e., the critical
removal fraction of vertices (edges) for the disintegration of a network,
to characterize the structural robustness of complex networks. The
disintegration of network performance is measured in terms of network
performance. The most common performance measurements include
the diameter, the size of the largest component, the average path length,
and efficiency [26]. As the fraction of removed vertices (or edges)
increases, the performance of the network will eventually collapse
at a critical fraction. Although we can obtain the critical removal
fraction for some special networks analytically [27]–[31], generally,
this measure can only be calculated through simulations, and then, the
computational complexity is determined by the calculation of network
performance.

In order to facilitate a comparison between various existing mea-
sures, we present the characteristics of existing measures of structural
robustness in Table I.

An intuitive notion of structural robustness can be expressed in
terms of the redundancy of routes between vertices. If we consider a
source vertex and a termination vertex, there may be several routes
between them. When one route fails, the two vertices can still com-
municate through other alternative routes. It is intuitive that the more
alternative routes present, the more robust the connectedness between
the two vertices. This observation leads us to consider the redundancy

of alternative paths as a measure of the structural robustness of
networks, since this ensures that the connection between vertices
remains possible in spite of damage to the network. Although it would
be ideal to define this redundancy as the number of alternative routes of
different lengths for all pairs of vertices, this measure is very difficult
to calculate. However, the number of closed walks in a network is a
good index for the number of alternative routes. In this paper, we pro-
pose a new structural robustness measure of complex networks based
on the number of closed walks in the graph, which is easy to compute.

II. DEFINITION OF NATURAL CONNECTIVITY

A complex network can be viewed as a simple undirected graph
G(V,E), where V is the set of vertices and E ⊆ V × V is the set
of edges. Let N = |V | and M = |E| be the number of vertices and
the number of edges, respectively. Let di be the degree of vertex vi.
Let dmin be the minimum degree and dmax be the maximum degree
of G. Let A(G) = (aij)N×N be the adjacency matrix of G, where
aij = aji = 1 if vertices vi and vj are adjacent and aij = aji = 0

if otherwise. A walk of length k in a graph G is an alternating
sequence of vertices and edges v0e1v1e2 · · · ekvk, where vi ∈ V and
ei = (vi−1, vi) ∈ E. A walk is closed if v0 = vk.

Closed walks are directly related to the subgraphs of the graph. For
instance, a closed walk of length k = 2 corresponds to an edge, and a
closed walk of length k = 3 represents a triangle. Note that a closed
walk can be trivial, i.e., containing repeated vertices, leading to the
length of a closed walk being infinite. The number of closed walks is an
important index for complex networks. Here, we propose to measure
the redundancy of alternative routes as the scaled number of closed
walks of all lengths. Considering that shorter closed walks have more
influence on the redundancy of alternative routes than longer closed
walks and to avoid the divergence of the number of closed walks of all
lengths, we scale the contribution of closed walks of length k by the
factorial of k. That is, we consider the weighted sum of numbers of
closed walks S =

∑∞
k=0

(nk/k!), where nk is the number of closed
walks of length k, which can be obtained from the powers of the
adjacency matrix

nk = trace(Ak) =

N∑
j=1

λk
j (1)

where λj is the jth largest eigenvalue of A(G). Specifically, note that
n2 =

∑
j
dj = 2M .

Using (1), we obtain

S =

∞∑
k=0

N∑
j=1

λk
j

k!
=

N∑
j=1

∞∑
k=0

λk
j

k!
=

N∑
j=1

eλj . (2)

Hence, the proposed weighted sum of closed walks of all lengths can
be derived from the graph spectrum. We remark that (2) corresponds
to the Estrada index of the graph [32], [33], which has been used in
several contexts in graph theory, including subgraph centrality [34],
bipartivity [35], and expansibility [36], [37]. Noting that S will be a
large number for large N , we scale S and denote it by λ̄

λ̄ = ln(S/N) = ln

[
1

N

N∑
j=1

eλj

]
(3)

which corresponds to an “average eigenvalue” of the graph adjacency
matrix. We propose to call it natural connectivity or eigenvalue of the
graph.
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Fig. 1. Graph (b) is obtained from graph (a) by adding an edge. Both graphs
have identical edge connectivity and identical algebraic connectivity but are
distinguished by our proposed natural connectivity.

When N → ∞, with continuous approximation for λi, (3) can be
written as

λ̄ = ln


 +∞∫
−∞

ρ(λ)eλdλ


 = ln (Mλ(1)) (4)

where ρ(λ) is the spectral density and Mλ(t) is the moment-
generating function of ρ(λ).

The proposed natural connectivity has some desirable features. In
particular, λ̄ changes monotonically when edges are added or deleted.
To see this, consider a graph G where the number of closed walks of
length k is nk. Let G+ ε be the graph obtained by adding an edge ε to
G, and let n̂k = n̂′

k + n̂′′
k be the number of closed walks of length k in

G+ ε, where n̂′
k(n̂

′′
k) is the number of closed walks of length k with

(without) ε. Note that n̂′
k ≥ 0 and n̂′′

k = nk; hence, n̂k ≥ nk. It is easy
to show that n̂k > nk for some k, e.g., n̂2 = n2 + 2. Consequently,
λ̄(G+ ε) > λ̄(G), indicating that the natural connectivity increases
strictly monotonically as edges are added.

Thus, the natural connectivity provides a sensitive means to detect
the changes of structural robustness. For instance, consider the two
simple graphs with six vertices in Fig. 1, where graph (b) is obtained
by adding an edge to graph (a). Our intuition suggests that graph (b)
should be more robust than graph (a). This agrees with our measure:
The natural connectivities of graphs (a) and (b) are 1.0878 and 1.3508,
respectively. However, some of the traditional structural robustness
measures mentioned in the Introduction cannot distinguish the two
graphs. For example, both graphs have identical edge connectivity, i.e.,
2, and identical algebraic connectivity, i.e., 0.7369.

According to the monotonicity of natural connectivity, we know
that, for a given number of vertices N , the empty graph (consisting
of isolated vertices) has the minimum natural connectivity, and the
complete graph (all of whose vertices are pairwise adjacent) has
the maximum natural connectivity. Using the well-known results
that λ1 = λ2 = · · · = λN = 0 for the empty graph and λ1 = N − 1,

λ2 = λ3 = · · · = λN = −1 for the complete graph [38], we obtain
the following bounds for the natural connectivity:

0 ≤ λ̄ ≤ ln
[
(N − 1)e−1 + eN−1

]
− lnN (5)

with asymptotic behavior as N → ∞ given by

0 ≤ λ̄ ≤ N − lnN. (6)

III. NATURAL CONNECTIVITY OF TYPICAL NETWORKS

The simplicity of the mathematical formulation of the natural con-
nectivity introduced earlier enables us to obtain analytical results for

Fig. 2. Regular ring lattice with N = 20 and K = 2.

different networks. We next derive the natural connectivity of three
typical networks of relevance in different applications.

A. Natural Connectivity of Regular Ring Lattices

A regular ring lattice RN,2K is a 2K-regular graph with N vertices
on a 1-D ring in which each vertex is connected to its 2K neighbors
(K on each side), as shown in Fig. 2. These graphs have been
considered in the area of coordinated motion, proximity graphs,
and synchronization [39]. The RN,2K constitutes the pristine worlds
from which small-world graphs were obtained in the original
Watts–Strogatz construction [1].

The adjacency matrix A of RN,2K is a symmetric circulant matrix
of the form

A =




c0 c1 · · · cN−1

cN−1 c0 · · · cN−2

· · · · · · · · · · · ·
c1 c2 · · · c0


 (7)

where ck = 0 if k = 0 or K < k < N −K and ck = 1 if 1 ≤ k ≤ K

or N −K ≤ k ≤ N − 1. Diagonalization of this circulant matrix by
the Fourier matrix leads to the following eigenvalues:

λj =

N−1∑
k=0

ck exp

(
−2πik(j − 1)

N

)
, j = 1, 2, . . . , N (8)

where i =
√
−1.

For the regular ring lattices RN,2K , the spectrum is then given by

λj =

K∑
k=1

2 cos

[
2πk(j − 1)

N

]
, j = 1, 2, . . . , N (9)

which can be substituted into (3) to obtain the expression of the natural
connectivity

λ̄RN,2K
= ln

[
1

N

N∑
j=1

exp

(
K∑

k=1

2 cos

(
2πk(j − 1)

N

))]
. (10)

To simplify (10), we need to introduce the Bessel functions [40].
The Bessel functions of the first kind Jα(x) are defined as the solutions

wujunpla
高亮

wujunpla
高亮

wujunpla
高亮



IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 41, NO. 6, NOVEMBER 2011 1247

to the Bessel differential equation

x2 d
2y

dx2
+ x

dy

dx
+ (x2 − α2)y = 0 (11)

which are nonsingular at the origin. Another definition of the Bessel
functionforintegervaluesofn ispossibleusinganintegralrepresentation

Jn(x) =
1

π

π∫
0

cos(nτ − x sin τ) dτ. (12)

The generalized Bessel functions of the first kind for integer values
of n are defined by

Jn(x1, x2, . . . xM ) =
1

π

π∫
0

cos(nτ−x1 sin τ−x2 sin 2τ

− . . .−xM sinMτ)dτ. (13)

A related class of functions is the modified Bessel functions of the
first kind

Iα(x) = i−αJα(ix) (14)

which are the solutions to the modified Bessel differential equation

x2 d
2y

dx2
+ x

dy

dx
− (x2 + α2)y = 0. (15)

The corresponding modified generalized Bessel functions are de-
fined by

In(x1, x2, . . . xM ) =
1

π

π∫
0

cos(nτ) exp

[
M∑
s=1

xs cos sτ

]
dτ. (16)

The following are some relevant properties of the modified general-
ized Bessel functions [41]–[43]:

In(x1, x2, . . . xM) = I−n(x1, x2, . . . xM ) (17)

In(x1, x2,. . ., xM)→ 0, as n → ∞ (18)

∞∑
n=−∞

einτIn(x1, x2, . . . , xM ) = exp

[
M∑
s=1

xs cos(sτ)

]
(19)

In(x1, x2, . . . , xM ) =

∞∑
�=−∞

In−M�(x1, x2, . . . , xM−1)I�(xM ).

(20)

Using (19), we can rewrite (10) as

λ̄RN,2K
= ln


 1

N

N∑
j=1

∞∑
n=−∞

exp

(
in

2π(j − 1)

N

)
In(

K︷ ︸︸ ︷
2, 2, . . . 2)




= ln


 ∞∑

n=−∞

In(

K︷ ︸︸ ︷
2, 2, . . . 2) · δn,Nz




= ln


I0( K︷ ︸︸ ︷

2, 2, . . . 2) + 2

∞∑
z=1

INz(

K︷ ︸︸ ︷
2, 2, . . . 2)


 (21)

Fig. 3. Natural connectivity of regular ring lattices. (a) λ̄ versus N
with K = (�) 3, (�) 4, and (�) 5; (b) λ̄. (b) λ̄ versus K with N =
(�) 30, (�) 50, and (�) 100. The symbols represent the numerical results, and
the lines represent the analytical results according to (23).

where we have used (17) and the fact that

1

N

N∑
j=1

exp

[
in

2π(j − 1)

N

]
= δn,Nz, z ∈ Z (22)

where δn,Nz is the Kronecker delta, i.e., δn,Nz = 1 if n = Nz and

δn,Nz = 0 if otherwise. From the limit in (18), INz(

K︷ ︸︸ ︷
2, 2, . . . , 2) → 0

as N → ∞, and we obtain the following asymptotic result:
Theorem 1: The natural connectivity of a regular ring lattice

RN,2K is

λ̄RN,2K
= ln


I0( K︷ ︸︸ ︷

2, 2, . . . 2) + o(1)


 (23)

where o(1) → 0 as N → ∞.
Remark 1: The cycle graph CN is a special case of a regular ring lat-

tice with K = 1, i.e., CN = RN,2. Hence, λ̄CN
= ln(I0(2) + o(1)).

Using the recursion in (20), we calculate I0(

K︷ ︸︸ ︷
2, 2, . . . , 2) in terms

of the standard (univariate) Bessel functions In(x) and show in Fig. 3
that our analytical results agree well with numerical calculations. The
figure confirms that, when N is large, the natural connectivity for
regular ring lattices is independent of the network size. We also show
that the natural connectivity increases monotonically (but sublinearly)
with the number of neighbors 2K, which is also the edge connectivity
for these graphs, i.e., λ̄RN,2K

< λ1(RN,2K) = 2K, which follows
directly from the definition of the natural connectivity shown in (3).

B. Natural Connectivity of Random Graphs

The theory of random graphs was introduced by Erdös and Rényi
[44]. A detailed review of random graphs can be found in the classic
book by Bollobás [24]. Here, we consider the classic ER random
graph GN,p with N vertices, in which each of the C2

N = N(N − 1)/2

possible edges occurs independently with probability p. It is well
known that the largest eigenvalue λ1 of GN,p is almost surely Np[1 +

o(1)] provided that Np ≥ lnN [45], [46]. Moreover, according to
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Wigner’s semicircle law [47], as N → ∞, the spectral density of GN,p

converges to the semicircular distribution

ρSC(λ) =

{
2
π

√
1−

(
λ
R

)2
, |λ| ≤ R

0, |λ| > R
(24)

where R = 2
√

Np(1− p) is the radius of the “bulk” of the spectrum
that contains all eigenvalues other than λ1.

We now use these expressions to obtain the asymptotic behavior
of the natural connectivity of ER random graphs with lnN/N ≤ p ≤
1− lnN/N as follows:

λ̄ER = ln


 +R∫
−R

ρSC(λ)e
λdλ+ eλ1/N




= ln
[
MSC

λ (1) + eNp/N
]

(25)

where

MSC
λ (1) =

2

π

+R∫
−R

√
1−

(
λ

R

)2

eλ dλ. (26)

Substituting λ = R cos(θ) into (26), we obtain

Mλ(1) =
2

π

π∫
0

eR cos(θ) sin2(θ) dθ. (27)

Note that [40]

Iα(x) =
(x/2)α

π1/2Γ(α+ 1/2)

π∫
0

ex cos(θ) sin2α(θ) dθ (28)

where Iα(x) is the modified Bessel function and Γ(x) is the Gamma
function. Then, we obtain that

I1(R) =
R

π

π∫
0

eR cos(θ) sin2(θ) dθ. (29)

Using (29), we can simplify (27) as

Mλ(1) = 2I1(R)/R. (30)

Substituting (30) into (25), we obtain

λ̄ER = ln

[
2
I1(R)

R
+

eNp

N

]
=Np− ln(N) + ln

[
1 + 2

NI1(R)

eNpR

]
=Np− ln(N) + ln [1 + f(p)] (31)

where

f(p) =
2NI1(R)

ReNp
. (32)

The fact that the spectrum of ER graphs has a large gap with the
bulk of the spectrum concentrated in the semicircle would indicate that
the asymptotic behavior of the natural connectivity is dominated by the
largest eigenvalue. This can be shown in more details by characterizing
the asymptotic behavior of f(p) as follows. First, we give two simple
lemmas.

Fig. 4. Natural connectivity of ER random graphs. (a) λ̄ versus p
with N = (•) 100, (�) 500, and (�) 1000. (b) λ̄ versus N with p =
(•) 0.1, (�) 0.3, and (�) 0.5. Each quantity is an average over 1000 realiza-
tions. The lines represent the corresponding analytical results according to (39).

Lemma 1: As N → ∞, f(p) is a monotonically decreasing func-
tion for lnN/N < p < 1− lnN/N .

Proof: It is easy to see that 2
√

lnN(1− lnN/N) < R ≤
√
N

for lnN/N < p < 1− lnN/N , which implies that R → ∞ as N →
∞. We can then use the asymptotic form of the modified Bessel
functions Iα(x) valid for large x 
 |α2 − 1/4|[48]

Iα(x) →
1√
2πx

ex. (33)

Hence, for lnN/N < p < 1− lnN/N

f(p) →N

√
2

π

eR−Np

R3/2
(34)

df(p)

dp
→N2

√
2

π

eR−Np

R5/2

[
(1− 2p)

(
2− 3

R

)
−R

]
(35)

< 0. (36)

Therefore, as N → ∞, f(p) is monotonically decreasing for
lnN/N < p < 1− lnN/N . �

Lemma 2: Let pc = (
√
lnN + 1 + 1)2/N . Then, f(pc) → 0 as

N → ∞.
Proof: Note that pc → lnN/N from above and pc → 0 as N →

∞. It then follows that

R(pc) → 2
(√

lnN + 1 + 1
)
. (37)

Hence

f(pc) →N

√
2

π
· e

R(pc)−Npc

R
3/2
pc

=
N

2
√
π
· e− lnN(√

lnN + 1 + 1
)3/2

=
1

2
√
π
(√

lnN + 1 + 1
)3/2 → 0. (38)

The proof is completed.
By Lemma 1 and Lemma 2, it is easy to see that f(p) ≤ f(pc) → 0

for pc ≤ p ≤ 1− pc as N → ∞.
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Fig. 5. (©) Largest eigenvalue of random SF networks estimated by (solid
line) the second-order average degree d̃ and (dashed line) the square root of
maximum degree

√
M , where N = 1000 and m = 10. Each numerical result

is an average over 100 realizations.

Consequently, we obtain the following result.
Theorem 2: Let GN,p be a random graph with ζ/N ≤ p ≤ 1−

ζ/N , where ζ = (
√
lnN + 1 + 1)2; then, the natural connectivity of

GN,p almost surely is

λ̄ = Np− lnN + o(1) (39)

where o(1) → 0 as N → ∞.
Equation (39) shows that the natural connectivity of random graphs

increases linearly with edge density p for a given graph size N . Since
the average degree 〈k〉 ≈ Np, the natural connectivity of random
graphs also increases linearly with the average degree. Fig. 4 shows
that our analytical results agree well with the simulations of 1000
independent ER graphs for which we compute the average natural
connectivity for each combination of N and p.

C. Natural Connectivity of Random SF Networks

SF networks play an important role in the field of complex networks.
They have a power-law degree distribution p(k) ∼ k−γ and have been
found to describe many real-world networks in nature and society.
Here, we study the random SF networks generated by the extended
random graph model [49]. Note that, in contrast to the configuration
model [50], the extended random graph model does not produce a
graph with a prescribed degree sequence. Instead, it yields a ran-
dom graph with a given expected degree sequence. We consider the
random graphs with a given expected degree sequence w1 ≥ w2 ≥
· · · ≥ wN , where wi = ci−1/(γ−1), γ > 2. Here, c can be determined
by the minimum degree m = wN = cN−1/(γ−1); then, we obtain
c = mN1/(γ−1). It also follows that the maximum degree M = w1 =

mN1/(γ−1). The vertex vi is assigned with a vertex weight wi. The
edges are chosen independently and randomly with probability ρij =

wiwj/
∑

t
wt, and the expected degree of vi is wi. Notice that we

allow loops in the model (for computational convenience) but their
presence does not play any essential role. It is easy to verify that
the degree distribution is p(k) = (γ − 1)mγ−1k−γ and the average
degree is 〈k〉 = m(γ − 1)/(γ − 2) [51].

Although there has been an extensive work on the spectral density of
SF networks, it is still difficult to obtain all the eigenvalues analytically.
From (3), we observe that the largest eigenvalue plays an important
role for natural connectivity when the spectral gap is large. Our
numerical observations indicate that this is the case for the SF networks

Fig. 6. (a) Natural connectivity of random SF networks as a function of
minimum degree m, where N = 1000 and γ = 4. (b) Natural connectivity
of random SF networks as a function of scale exponent γ, where N = 1000
and m = 10. The dashed line represents the estimation by (40), and the solid
line represents the estimation by (41). (©) Each numerical result is an average
over 100 realizations.

studied here. This leads us to consider the following approximation for
the natural connectivity:

λ̄SF = ln

[
1

N

(
N∑
i=2

eλi + eλ1

)]
≈ λ1 − lnN. (40)

Chung et al. [45] proved that λ1 is roughly equal to the second-order
average degree d̃ = 〈k2〉/〈k〉 or the maximum degree

√
M if one of

them is much larger than the other, where the notation 〈.〉 denotes the
expectation. However, in most cases, d̃ and

√
M are comparable. Fig. 5

shows the largest eigenvalue λ1 along with d̃ and
√
M as a function

of the scale exponent γ. We find that λ1 can be well estimated by d̃ if
γ ≥ 3. These results appear consistently for different N ’s and m’s and
will be discussed in a future publication.

To simplify our analytical calculations, we now consider random SF
networks with γ ≥ 3 and approximate the natural connectivity as

λ̄SF ≈ λ1 − lnN ≈ d̃− lnN (41)

where

d̃ =

{
m γ−2

γ−3
= 〈k〉 (γ−2)2

(γ−1)(γ−3)
, γ > 3

m lnN
2

= 〈k〉 lnN
4

, γ = 3.
(42)

In Fig. 6, we show both the numerical and estimated results from
(40) and (41). We find that the natural connectivity can be estimated
by (40) very well. Moreover, when γ ≥ 3, it can be estimated by (41)
with small errors, which come from the finite-size effect of networks.
Equation (41) and our numerics show that the natural connectivity of
random SF networks with γ ≥ 3 increases (linearly) with m (or 〈k〉)
for given N and γ and it decreases with γ for given N and m.

IV. COMPARISON WITH OTHER MEASURES OF

ROBUSTNESS UNDER EDGE DELETION

We now explore in depth the behavior of the natural connectivity
under different scenarios of edge elimination and compare it with other
existing structural robustness measures. Clearly, as edges are deleted,
we expect a decrease of the structural robustness of the network.
However, we also expect that different elimination strategies will lead
to different behaviors in the collapse of the network. To test this, we
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Fig. 7. Structural robustness measured by (a) edge connectivity, (b) algebraic
connectivity, (c) critical removal fraction of vertices, and (d) natural connec-
tivity, as a function of the number of deleted edges for four edge elimination
strategies: (•) random strategy, (�) rich–rich strategy, (�) poor–poor strat-
egy, and (�) rich–poor strategy. The initial network is generated using the
BA model, with N = 1000 and 〈k〉 ≈ 6. Each quantity is an average over
100 realizations. The lines are guide to the eye.

generate initial networks with a power-law degree distribution using
the BA model [2], corresponding to SF networks with γ = 3, and
consider four edge elimination strategies: 1) deleting the edges ran-
domly (random strategy); 2) deleting the edges connecting high-degree
to high-degree vertices in descending order of di · dj , where di and
dj are the degrees of the end vertices of an edge (rich–rich strategy);
3) deleting the edges connecting low-degree to low-degree vertices in
ascending order of di · dj (poor–poor strategy); and 4) deleting the
edges connecting high- to low-degree vertices in descending order of
|di − dj | (rich–poor strategy). We remark that the type of network
chosen has no effect on the analysis and conclusions that follow.

Along with the natural connectivity, we investigate three other
structural robustness measures: edge connectivity κE(G), algebraic
connectivity a(G), and critical removal fraction of vertices under
random failure fR

c . To find the critical removal fraction of vertices,
we use κ ≡ 〈k2〉/〈k〉 ≤ 2 as the criterion for the disintegration of
networks [27]. The results shown in Fig. 7 correspond to averages over
100 realizations of a BA network.

Our numerics in Fig. 7(a) and (b) show similar behavior for κE(G)

and a(G). The first observation is that deleting a small quantity of
rich-to-rich edges has no obvious effect on the structural robustness
measured by the edge or algebraic connectivity. On the other hand,
the structural robustness drops rapidly under the poor–poor strategy. It
is generally believed that the edges between high-degree vertices are
important, and the edges between low-degree vertices are inessential
for the global network robustness. For example, in the Internet, the
failure of the links between core routers will bring a disaster, but
there is no effect on the structural robustness if we disconnect two
terminal computers. Clearly, structural robustness measures based on
edge or algebraic connectivity do not agree with our intuition. These
unexpected features can be explained by the bound a(G) ≤ κV (G) ≤
κE(G) ≤ dmin, also known as Fiedler’s inequality [22], where κ(G)

is the vertex connectivity. In fact, we find that the probability of
κE(G) = dmin almost approaches one. The edge connectivity drops
quickly in the poor–poor strategy since, after a few poor–poor edges
are deleted, dmin decreases rapidly. On the other hand, dmin is pre-
served under the rich–rich strategy. Moreover, we find that, for all
four strategies, the edge or algebraic connectivity is equal to zero

Fig. 8. Chinese Internet AS-level topology CN05, which contains 84 vertices
and 211 edges.

Fig. 9. Structural robustness measured by (a) edge connectivity, (b) algebraic
connectivity, (c) critical removal fraction of vertices, and (d) natural connec-
tivity, as a function of the number of deleted edges for four edge elimination
strategies: (•) random strategy, (�) rich–rich strategy, (�) poor–poor strategy,
and (�) rich–poor strategy. The initial network is the Chinese Internet AS-level
topology CN05. The lines are guide to the eye.

after particular edges are deleted, even in the case where only very
few vertices are separated from the largest cluster. This means that
both the edge and algebraic connectivities lose discrimination when
the network is disconnected.

Fig. 7(c) shows the critical removal fraction of vertices fR
c as a

function of the number of deleted edges. Contrary to the result of edge
or algebraic connectivity and in agreement with our intuition, we ob-
serve that the rich–rich strategy is the most effective edge elimination
strategy and the poor–poor strategy is the least effective to induce the
collapse of the network. However, our numerics highlight the irregular
behavior of the curves as edges are deleted even after averaging over
many realizations. This indicates that the critical removal fraction is
not a sensitive measure of structural robustness, particularly for small-
sized networks.

In Fig. 7(d), we show the results of the natural connectivity ac-
cording to (3). We find a clear variation of the measure with distinct
differences between the four edge elimination strategies, showing
a clear ranking for the four edge elimination strategies: rich–rich
strategy � rich–poor strategy � random strategy � poor–poor strategy,
which agrees with our intuition. For the random strategy, we observe
a linear decrease of the natural connectivity. For the rich–rich or
rich–poor strategy, the natural connectivity decreases rapidly with the
edge elimination. For poor–poor strategy, deleting a small quantity of
poor–poor edges has a weak effect on the structural robustness. More-
over, the curves of the natural connectivity are smooth, a consequence
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of the strict monotonicity of the measure. This indicates that the
natural connectivity can measure the structural robustness of complex
networks stably even for very small sized networks. In fact, we find
that the curves for natural connectivity are also smooth even without
averaging over 100 realizations, viz., for each individual network. In
contrast, in the case of individual networks, we find stepped curves for
the edge or algebraic connectivity and large fluctuations for the critical
removal fraction.

We repeat the aforementioned comparisons using the real data of
Chinese Internet Autonomous System (AS)-level topology CN05 [52]
shown in Fig. 8, which contains 84 vertices and 211 edges. We obtain
similar results (see Fig. 9).

V. CONCLUSION

We have proposed the concept of natural connectivity as a spectral
measure of structural robustness in complex networks. The natural
connectivity is rooted in the inherent structural properties of a network
and is expressed in mathematical form as an average eigenvalue. The
theoretical motivation of our measure arises from the fact that the
structural robustness of a network comes from the redundancy of
alternative routes. The natural connectivity allows a precise quanti-
tative analysis of the structural robustness and works both in con-
nected and disconnected networks. We have proved that it changes
strictly monotonically with the addition or deletion of edges. We
have given the analytical expression of natural connectivity for three
well-known networks: regular ring lattices, ER random graphs, and
random SF networks. We have shown that the natural connectivity
has strong analytical ability for these typical networks. To test our
natural connectivity measure and compare it with other measures, we
have designed a scenario of edge elimination, in which four different
edge elimination strategies are considered. We have demonstrated
that the natural connectivity has an acute discrimination in measuring
the structural robustness of complex networks and can detect small
variations of robustness stably.

Rich information about the topology and dynamical processes can
be extracted from the spectral analysis of the networks. The natural
connectivity sets up a bridge between graph spectra and the structural
robustness of complex networks. The link between structural robust-
ness and spectral graph theory is of great theoretical and practical
significance in network design and optimization as it opens possibil-
ities to connect structural robustness to other network structural or
dynamical properties such as efficiency, synchronization, diffusion,
and searchability. It is worthy to indicate that we just propose the
concept of natural connectivity for simple undirected networks. The
extension of natural connectivity for directed or weighted networks is
still an open question.
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