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Dealing with the protection of critical infrastructures, many game-theoretic methods have been
developed to study the strategic interactions between defenders and attackers. However, most game
models ignore the interrelationship between different components within a certain system. In this
paper, we propose a simultaneous-move attacker-defender game model, which is a two-player
zero-sum static game with complete information. The strategies and payoffs of this game are
defined on the basis of the topology structure of the infrastructure system, which is represented by
a complex network. Due to the complexity of strategies, the attack and defense strategies are con-
fined by two typical strategies, namely, targeted strategy and random strategy. The simulation
results indicate that in a scale-free network, the attacker virtually always attacks randomly in the
Nash equilibrium. With a small cost-sensitive parameter, representing the degree to which costs
increase with the importance of a target, the defender protects the hub targets with large degrees
preferentially. When the cost-sensitive parameter exceeds a threshold, the defender switches to
protecting nodes randomly. Our work provides a new theoretical framework to analyze the confron-
tations between the attacker and the defender on critical infrastructures and deserves further study.
Published by AIP Publishing. https://doi.org/10.1063/1.5029343

Critical infrastructures play a vital role in modern soci-
ety. The protection of these complex systems with limited
resources is challenging and attracts significant attention
by security agencies. The attackers who aim to destruct
these critical infrastructures are intelligent decision-
makers. As such, the prevention of such attacks requires
our protection measures to be strategic. However, the
interrelationship nature of components within a system
poses great challenge in analyzing and protecting them.
Here, we use a game-theoretic framework to analyze this
problem and take a network science perspective to
understand these systems, in which the idea is new.

I. INTRODUCTION

Modern society is dependent on its critical infrastruc-
tures, such as communication, electrical power, rail, and fuel
distribution networks.1,2 This dependence has made critical
infrastructures to be the military targets in times of war. For
example, in the U.S. Civil War, the rail junction of
Chattanooga became a key military objective, and telegraph
networks were also attacked. More recently, in the former
Yugoslavia, the U.S. Air Force temporarily disabled electrical
power stations by dropping conductive fibers. Moreover, criti-
cal infrastructures are also targeted by terrorists. Terrorist
attacks on electrical power networks, rail networks, and oil
pipelines have occurred in Colombia, India, Pakistan, Turkey,
Algeria, and Spain. There are enormous public investments in
each critical infrastructure system. Thus, even a minor disrup-
tion, randomly or deliberately caused, can degrade the systems
performance and inflict substantial economic losses.3 It is

essential for us to analyze the vulnerability of such a system
facing a set of coordinated terrorist attacks and make informed
proposals to reduce its vulnerability.

Probabilistic risk assessment (PRA) is a traditional tech-
nique for non-deliberate threats such as natural disasters,
technological failures, and accidents. Many researchers and
organizations, including the U.S. Department of Homeland
Security (DHS), have attempted to use PRA to analyze criti-
cal infrastructure investment and protection.4 PRA models
require the probabilities of events to be defined as static
inputs. However, growing evidence indicates that static prob-
abilities are inappropriate for modeling the behaviors of an
intelligent adversary.5,6

Recently, there has been significant research interest in
game-theoretic approaches dealing with the protection of
infrastructure systems.7–12 Game theory is the study of
mathematical models of conflict and cooperation between
intelligent decision-makers and therefore offers a more
appropriate framework to model the situations where defend-
ers want to protect critical infrastructures from attack by
building defenses, while attackers aim to attack in a maxi-
mally harmful manner. Brown et al.3 introduce the general
attacker-defender game model, where the defender’s object
is to minimize the total operating costs obtained by summing
the operating costs of individual components, and the attack-
er’s aim is to maximize the costs by attacking some compo-
nents. Nochenson and Heimann13 propose an agent-based
attacker-defender game in a computer network, in which the
value of an individual computer is preassigned randomly in
the simulation. In this game, the defender’s utility is the total
loss of the attacked machines minus the costs of protecting
some machines. The attacker’s payoff is the total value of
the machines that he attacks. This paper also considers somea)Electronic mail: junwu@nudt.edu.cn
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typical attack and defense strategies. Guan et al.14 models a
multi-target attacker-defender game with budget constraints
in both sequential form and simultaneous form. Both the
attacker and the defender have different valuations for each
target, and the probability that whether a target is success-
fully attacked is determined by a contest success function.
They find that a higher proportion of defense resources
should be allocated to the most valuable target if the defend-
er’s budget is low while the attacker is less concentrated on
attacking the most valuable target as his budget increases.
Many applications based on game-theoretic models have
also been deployed in airports,15 ports,16 transportation,17

and many other infrastructures.18,19

However, most of these game models treat the targets as
independent ones14,20 and evaluate the payoffs of the players
by summing up the valuations of individual targets.13 This
means that there is an exact valuation associated with each
target, which may be given by security specialists in
advance. However, in many critical infrastructure systems
where targets are networked, the functionality relies heavily
on their connectivity and topology structures, which means
that the importance of a target is not only determined by its
monetary value but also affected by its neighbors in the net-
work. The failure of some targets individually may make
limited difference on the functionality of the network, but it
can have a devastating effect when these targets are attacked
simultaneously. For example, the cascading failure caused
by merely two power lines led to the blackouts in 11 states in
the U.S. in 1996.21 This inspires us to depict critical infra-
structures as networked systems and consider a holistic view
to tackle this problem. Therefore, different from the previous
optimization-based game models, in this paper we will eval-
uate the effect caused by attack from a network science
perspective and explore the equilibrium results between the
strategic attacker and the defender. The article is structured
as follows. In Sec. II, we introduce the cost model, strategies,
payoffs of the game, and define two typical strategies. The
simulation pseudocode of the payoff matrix and the solving
method in a LP formulation are shown in Sec. III. Sections
IV and V show the equilibrium results of the game. Finally,
we provide a conclusion in Sec. VI.

II. ATTACKER-DEFENDER GAME MODEL

Consider a target network formalized in terms of a sim-
ple undirected graph GðV; EÞ, where V is the set of nodes
and E # V $ V is the set of edges. Suppose N ¼ jVj be the
number of nodes in the network. We denote AðGÞ ¼ ðaijÞN$ N

as the adjacency matrix of G, where aij ¼ aji ¼ 1 if nodes vi

and vj are adjacent, and aij ¼ aji ¼ 0 otherwise. Let ki

¼
PN

j¼1 aij be the degree of node vi, which equals the num-
ber of edges connected to node vi. Average degree hki of the
whole network is hki ¼ 1

N

PN
i¼1 ki.

We only consider one attacker and one defender in this
paper, which are the players of the game model. We assume
that both players can obtain the complete information of the
target network and full knowledge about the opponent, that
is, the available resources of each other and costs of each tar-
get, thus they are perfectly informed of the payoffs of the

other player for all possible strategy profiles. Moreover, we
assume that both players move simultaneously without
knowing the decision made by the other player and the game
is a single shot one.

In this paper, we assume that the attack as well as the
defense approaches are against nodes and the attached edges
are removed if one node is removed. Suppose cA

i and cD
i be

the attack cost and defense cost of node vi, respectively. We
assume that the cost cA

i or cD
i is a function of a certain refer-

ential property ri & 0 of node vi with the following forms:

cA
i ¼ rqA

i ; cD
i ¼ rqD

i ; (1)

where qA & 0 is the attack-cost-sensitive parameter and
qD & 0 is the defense-cost-sensitive parameter. Apparently,
a target with larger r is costlier for both players, particularly
when qA or qD is large. In the extreme case where qA¼ 0, the
attack costs toward each target are homogeneous. Besides,
the parameters qA and qD may have different values in a spe-
cific system and are exogenously determined by the system
itself, which can be evaluated by security experts with histor-
ical data. For instance, the costs to protect different com-
puters in a computer network from attacking by virus are
almost equal, while attacking hub stations in a railway net-
work is much costlier. The referential property ri can be set
as the degree, the betweenness, or other structural measures
of nodes. Further, the available resources of the attacker and
the defender are defined as

Ĉ
A ¼ hA

XN

i¼1

cA
i ¼ hA

XN

i¼1

rqA
i (2)

and

Ĉ
D ¼ hD

XN

i¼1

cD
i ¼ hD

XN

i¼1

rqD
i ; (3)

respectively, where hA 2 ½0; 1( is the attack-cost-constraint
parameter and hD 2 ½0; 1( is the defense-cost-constraint
parameter. The parameters hA and hD indicate the sufficiency
of the budgets for the two players.

Denote by VA # V the set of nodes are attacked. We
define an attack strategy as X ¼ ½x1; x2; … xN( 2 SA, where
SA is the strategy set of the attacker and xi¼ 1 if vi 2 VA, oth-
erwise xi ¼ 0. Let CX ¼

P
vi2VA cA

i be the total cost of the
attack strategy X. It is easy to identify that

CX ¼
X

vi2VA

cA
i ¼

XN

i¼1

xic
A
i ¼

XN

i¼1

xir
qA
i : (4)

Thus, the budget constraint of the attacker is

CX ¼
XN

i¼1

xir
qA
i ) Ĉ

A ¼ hA

XN

i¼1

rqA
i : (5)

Any solution X that satisfies Eq. (5) is a feasible attack strat-
egy. Similarly, the defended nodes set VD and defense strat-
egy Y ¼ ½y1; y2; … yN( 2 SD are defined in the same way as
the attacker. A feasible defense strategy satisfies
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CY ¼
XN

i¼1

yir
qD
i ) Ĉ

D ¼ hD

XN

i¼1

rqD
i : (6)

We assume that a node vi will be removed if it is attacked
but not defended, that is, if xi¼ 1 and yi ¼ 0. Conversely, a
defended node (yi¼ 1) is never removed. We denote the set
of nodes that are removed by V̂ # V and denote the network
after the removing process by Ĝ ¼ ðV * V̂ ; ÊÞ. It is easy to
identify that

V̂ ¼ VA * VA \ VD: (7)

The measure function of network performance is denoted by
C. We assume that if G1 ¼ ðV1;E1Þ is a subgraph of G2

¼ ðV2;E2Þ, i.e., V1 # V2 and E1 # E2, then CðG1Þ ) CðG2Þ.
This monotonicity assumption ensures that the network perfor-
mance declines during the process of nodes removals. The
common measure functions include the size of the largest con-
nected component, the efficiency,22 and so on. Suppose UA :
SA $ SD be the payoff function of the attacker and UAðX; YÞ
be the payoff received by the attacker when the attacker choo-
ses the strategy X and the defender adopts Y. Thus, the payoff
of the attacker is

UAðX; YÞ ¼ CðGÞ * CðĜÞ
CðGÞ

2 0; 1½ (: (8)

Similarly, the payoff of the defender is defined as

UDðX; YÞ ¼ CðĜÞ * CðGÞ
CðGÞ

2 * 1; 0½ (: (9)

Noting that UAðX; YÞ þ UDðX; YÞ ¼ 0, this attacker-defender
game is a two-player zero-sum game.

According to Eqs. (5) and (6), the strategy space of the
players will be extremely large for large network size N.
For example, when hA ¼ hD ¼ 1; jSAj ¼ jSDj ¼ 2N , 1030

with N¼ 100. Thus, the total number of strategy profiles
jSA $ SDj is more than 1060, where few techniques are avail-
able to solve this game model using brute force. Besides, the
payoff function of the game model has a non-explicit formu-
lation, where decomposition methods and compact represen-
tation used in the previous studies are not executable.19,23

However, with limited decision-support information and
computing power, decision-makers in most real-world sce-
narios generally choose a better one from several options.
We assume that the attacker follows some simple criterion to
decide which targets to attack and so does the defender.
Thus, for the convenience of analysis, we only consider two
typical attack and defense strategies, which were first sug-
gested by Albert et al.24 and well-investigated by subsequent
research. We define the attack strategies as the targeted
attack strategy (TAS) (corresponding to “intentional attack”)
and the random attack strategy (RAS) (corresponding to
“random failure”). The TAS prescribes the attacker to allo-
cate all the resource toward targets with the largest referen-
tial properties ri, while the RAS is attacking some targets
randomly. We also consider the defense strategies to be the
two typical defense strategies, namely, the targeted defense

strategy (TDS) and the random defense strategy (RDS).
Therefore, the payoff matrix under all strategy profiles is
shown in Fig. 1, where uij is the payoff of the attacker when
the attacker chooses strategy i and the defender takes strat-
egy j. The row player is the attacker and the column is the
defender.

Now, we use an example to illustrate how the game is
played. The target network is shown in Fig. 2. We set that qA

¼ qD ¼ 1 and hA ¼ hD ¼ 0:5. Besides, we choose degree ki as
the referential property ri in Eq. (1) and the size of the largest
connected component as a measure function C in Eq. (8). Thus,
the budgets of the two players are both 12. When the
attacker chooses the TAS, X1 ¼ ½1100010000(. One possible
RAS is X2 ¼ ½1000101101(. Similarly, Y1 ¼ ½1100010000(
and Y2 ¼ ½0101101011(. The payoff matrix is shown in Fig.
3, which indicates that the TDS is a dominant strategy for
the defender, and the RAS is dominant as well. Therefore, a
pure-strategy Nash equilibrium is obtained, where the
attacker chooses the RAS and the defender takes the TDS. It
is worth mentioning that the random strategy in another
realization may induce different payoffs and equilibrium.
Therefore, the analysis should be based on the averaged
payoffs over many independent realizations.

III. SOLVING THE GAME MODEL

Although the random strategy may not be exactly the
same in each independent game, the averaged payoffs over
adequate realizations can reveal the most probable case and
provide us useful insights. The algorithm pseudocode to
obtain the averaged payoff matrix is shown in Algorithm 1.

FIG. 1. Payoff matrix of the attacker-defender game.

FIG. 2. Topology structure of a target network.
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ALGORITHM 1: Algorithm pseudocode for obtaining the pay-
off matrix.

Input: A target network G(V, E) whose N ¼ jVj, ri, qA, qD, hA, hD,
number of independent realizations Nr;

Output: payoffs of the attacker u11, u12, u21, and u22;

1: Calculate ri of N nodes, resort their indexes, denoted by Ii, in descending
order by ri;

2: Calculate the available resources of the two players:

ĈA ¼ hA
PN

i¼1

rqA
i ; ĈD ¼ hD

PN

i¼1

rqD
i .

3: Initialization: CA
TAS  0; CA

RAS  0; CD
TDS  0; CD

RDS  0; u11  0;
u12  0; u21  0; u22  0; VA

TAS  ;; VA
RAS  ;; VD

TDS  ;; VD
RDS  ;;

del11  ;; del12  ;; del21  ;; del22  ;;
4: for i ¼ 1 : N do

5: if CA
TAS þ rqA

Ii
) ĈA then

6: VA
TAS  VA

TAS [ Ii, CA
TAS  CA

TAS þ rqA
Ii

;

7: end if

8: if CD
TDS þ rqD

Ii
) ĈD then

9: VD
TDS  VD

TDS [ Ii, CD
TDS  CD

TDS þ rqD
Ii

;

10: end if

11: end for

12: X1  zerosð1;NÞ; X1ðVA
TASÞ 1; Y1  zerosð1;NÞ; Y1ðVD

TDSÞ 1;

13: loop Nr times

14: ra randpermð1 : NÞ; rd  randpermð1 : NÞ;
15: for i ¼ 1 : N do

16: if CA
RAS þ rqA

rai
) ĈA then

17: VA
RAS  VA

RAS [ rai, CA
RAS  CA

RAS þ rqA
rai

;

18: end if

19: if CD
RDS þ rqD

rdi
) ĈD then

20: VD
RDS  VD

RDS [ rdi, CD
RDS  CD

RDS þ rqD

rdi
;

21: end if

22: end for

23: X2 zerosð1;NÞ; X2ðVA
RASÞ 1; Y2 zerosð1;NÞ; Y2ðVD

RDSÞ 1;

24: del11  findðX1 * Y1 ¼¼ 1Þ; del12  findðX1 * Y2 ¼¼ 1Þ;
del21  findðX2 * Y1 ¼¼ 1Þ; del22  findðX2 * Y2 ¼¼ 1Þ;

25: pay11 CðGÞ* CðG* del11Þ
CðGÞ ; pay12 CðGÞ* CðG* del12Þ

CðGÞ ; pay21 CðGÞ* CðG* del21Þ
CðGÞ ;

pay22 CðGÞ* CðG* del22Þ
CðGÞ ; u11 u11 þ pay11; u12 u12 þ pay12;

u21 u21 þ pay21; u22 u22 þ pay22; VA
RAS ;; VD

RDS ;;
26: end loop

27: u11  u11=Nr ; u12  u12=Nr; u21  u21=Nr ; u22  u22=Nr .

After the payoff matrix is obtained, we use a linear pro-
gramming to solve this zero-sum game and find its Nash
equilibrium. Suppose z is the expected payoff for the attacker
and U ¼ ðuijÞ is the payoff matrix of the attacker. The proba-
bility that the attacker and defender adopt strategy i is
denoted by pA

i and pD
i , respectively. The optimization model

of the defender is defined as follows:

min z

s:t:
X

j2SD

uij - pD
j ) z 8i 2 SA

X

j2SD

pD
j ¼ 1

pD
j & 0 8j 2 SD: (10)

In the first constraint, for every pure strategy i of the
attacker, the expected payoff for playing any strategy i 2 SA

given the mixed strategy pD of the defender is at most z, and
these pure strategies for which the expected utility is exactly
z will be in the best response set of the attacker. The optimi-
zation model of the attacker is

max z

s:t:
X

i2SA

uij - pA
i & z 8j 2 SD

X

i2SA

pA
i ¼ 1

pA
i & 0 8i 2 SA: (11)

By solving this linear programming, a Nash equilibrium
ðpA.; pD.Þ is obtained and the equilibrium payoff of the
attacker is z ¼ pA.T - U - pD. and that of the defender is * z.

IV. ATTACK AND DEFENSE STRATEGIES IN NASH
EQUILIBRIUMS

For the ubiquity of scale-free networks in natural and
man-made systems, we consider the target networks to be
scale-free networks in this paper, whose degree distributions
follow PðkÞ / k* k, where k is the degree exponent. We also
use degree ki as the referential property ri and the size of the
largest connected component as a measure function C, simi-
lar to the above example. First, we set qA ¼ qD 0 q and
hA ¼ hD 0 h ¼ 0:5. For each parameter configuration, the
payoffs are averaged over 5000 independent realizations to
obtain Nash equilibriums.

We show in Fig. 4 the equilibrium strategies of the two
players with different values of q. When q¼ 0.1, the attacker
takes the RAS with a probability of 1 and the defender
always chooses the TDS. This pure-strategy equilibrium is
denoted by (RAS, TDS). When q¼ 0.5, both players take
mixed strategies in equilibrium where the probability of the
RAS is approximately 0.9 and the defender chooses the RDS
with a probability of approximately 1. In the case of q¼ 0.9,
both players take the random strategy in equilibrium, which
is (RAS, RDS). It is easy to observe that the attacker always
takes the RAS with an extremely large probability regardless
of q, while the defender prefers the TDS when q is small and
shifts to the RDS when q increases.

To investigate the equilibrium strategies in depth, we
show the payoffs of the attacker as a function of q under all
strategy profiles in Fig. 5. Owing to the zero-sum feature of
the game, the payoffs of the defender are negations of the
attacker’s and not shown. There are two thresholds of q in
this figure, namely, q.1 ¼ 0:25 which makes u21 ¼ u22 and
q.2 ¼ 0:55 where u12 ¼ u22. When q < q.1, the TDS is

FIG. 3. Payoff matrix of the example whose target network is shown in Fig. 2.
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dominant for the defender as u12> u11 and u22> u21. Thus,
the Nash equilibrium is (RAS, TDS). When q > q.2, the RAS
becomes strictly dominant (u21> u11 and u22> u12) and the
equilibrium is (RAS, RDS). When q.1 < q < q.2, there are no
dominant strategy for both players, which means the equilib-
riums are mixed ones, where both the attacker and defender
adopt the random strategy with a far higher probability.

This result is rooted in the change of cost-sensitive
parameters and high heterogeneity of the degree distributions
in scale-free networks. As qA¼ qD and hA ¼ hD, the attack-
er’s best response to the TDS is always the RAS. When q is
small, the number of targets defended with the TDS is almost
equal to that with the RDS. However, the targets with larger
degrees contribute more to the connectivity of the network,
making the TDS more preferable for the defender. Thus, the
equilibrium is (RAS, TDS) when q < q.1. With an increase in
q, due to the degree distribution of scale-free networks, the
costs of attacking targets with large degrees become much
higher, leading to less targets being attacked with the TAS.
However, with the RAS, there are many nodes with small
degrees removed, whose number is rather large, providing

the attacker a considerable payoff. Thus, the attacker’s best
response to the RDS is the random attack strategy in this
case. Therefore, the attacker prefers choosing the RAS
regardless of the defender’s choice. The defender’s best
response to the RAS is the RDS in this case, as targets with
large degrees are also too costly to defend. Thus, the equilib-
rium becomes (RAS, RDS). Moreover, the mixed strategies
indicate that both players take the random strategy in most
cases because the random strategies have much higher prob-
abilities in the equilibriums when q.1 < q < q.2. When the
attacker allocates a higher probability on the TAS, a much
lower payoff will be obtained, because u11 ¼ 0 and the
defender will adopt the TDS to get a higher payoff in this
case. Therefore, the probability of the RAS will be far higher
in the attacker’s mixed equilibrium strategy, making the
defender be indifferent between the two defense strategies.
Besides, the defender will also choose the RDS with a higher
probability in equilibrium because u21> u22.

To validate our methods and results, we investigate the
equilibrium strategies with various parameters. First, we
implement simulations when qA 6¼ qD and find that the result
is quite similar to our previous one, particularly when the
difference between qA and qD is very minor. Further, we use
efficiency as the measure function, which is different from
the size of the largest connected component that mainly
indicates the reachability of pair-wise nodes in the network.
The result exhibits similar pattern, where the only difference
lies in the values of q.1 and q.2. Finally, we also investigate
the cases with different h and find similar equilibrium strate-
gies, but it is worth mentioning that the differences among
the payoffs in different strategy profiles are not so significant
as those when h¼ 0.5.

V. INFLUENCE OF TARGET NETWORKS ON
EQUILIBRIUM RESULTS

When the topology structure of the target network
changes, the payoffs under each strategy profile may be
different in comparison to the previous results, which may
lead to different equilibrium results. As we have assumed the
target networks to be scale-free networks, two parameters,
that is, average degree hki and degree exponent k, may make

FIG. 4. Equilibrium strategies of the players when q¼ 0.1 (a), q¼ 0.5 (b), and q¼ 0.9 (c). The target network is a random scale-free network whose N¼ 1000,
k¼ 3, and hki ¼ 4. The probability of the attacker to take the TAS in Nash equilibrium is shown on the horizontal axis and that of the RAS corresponds with
the vertical axis. Therefore, the equilibrium points are at all times on the dashed line, whose two ends represent pure-strategy equilibriums.

FIG. 5. Payoffs of the attacker in the payoff matrix versus q. The target net-
work is the same as that used in Fig. 4.
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a difference on equilibrium results. To investigate this influ-
ence, we alter these two parameters and obtain the corre-
sponding Nash equilibriums. The equilibriums are similar to
the previous results where the equilibrium strategies are
(RAS, TDS) when q < q.1 and (RAS, RDS) when q > q.2.
When q.1 < q < q.2, both players take mixed strategies.
Additionally, the values of q.1 and q.2 are influenced by the
topology structure of the target network, shown in Fig. 6. We
find that q.1 and q.2 both decrease monotonically with an
increase in average degree hki regardless of k. Besides, when
hki exceeds a certain value which is larger with a smaller k,
q.1 ¼ q.2 and they approximate 0, indicating that the players
adopt (RAS, TDS) as equilibrium strategies only when the
costs of different targets are extremely homogeneous.
Moreover, it is also evident that the networks with a smaller
k have larger q.1 and q.2 with the same hki.

This result can be explained by the disintegration effec-
tiveness of hub targets with largest degrees. In a less con-
nected network, the TAS will have a superior disintegration
effectiveness because the removal of hub targets will gener-
ate more small components, which is the case when hki is
smaller. This can be seen in Fig. 7(a), where larger hki makes
the payoffs u12 decrease dramatically. Besides, a network

with higher heterogeneity of the degree distribution (smaller
k) is more vulnerable under the TAS, which provides the
attacker a higher payoff, as can be seen in Fig. 7(b).
However, the disintegration effectiveness of the RAS is
mainly determined by the number of targets attacked, which
is scarcely affected by hki and k (Fig. 7). Thus, with increas-
ing hki and k, q.1 and q.2 become smaller.

VI. CONCLUSIONS AND DISCUSSIONS

Defending critical infrastructures in modern society has
attracted significant attention of researchers and organiza-
tions. Many methods have been proposed to tackle this prob-
lem, such as PRA and game-theoretic methods. However,
little research considers the interrelationship between the
targets to be protected. Different from the previous studies,
we think that the value of a target is not only determined
by its monetary value but also by the role it plays in the net-
work. Therefore, we evaluate the payoffs of the players in a
holistic view.

In this paper, we focus on the interconnection within a
certain infrastructure system which is represented by a com-
plex network. An attacker-defender game model is proposed,

FIG. 6. Thresholds of q versus average degree hki in random scale-free networks with different degree exponents k. The value of q.1 and q.2 is approximated,
such as, if 0:3 < q.1 < 0:4, q.1 ¼ 0:35.

FIG. 7. The payoffs of the attacker versus q with different hki and k. The payoff u11 is always equal to 0 when qA¼qD and hA ¼ hD, which is not shown. The
black lines in (a) and (b) are the payoffs of the attacker in a scale-free network whose N¼ 1000, k¼ 3, and hki ¼ 4. The red lines in (a) and the blue lines in
(b) are the results in scale-free networks with hki ¼ 6 and k ¼ 2:5, respectively. The two thresholds q.1 and q.2 of these three cases are also shown.
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which is a two-player zero-sum static game with complete
information. The payoffs of the two players are defined as
the reduction of network performance. Due to the complexity
of the strategies involved, we only consider two typical strat-
egies, namely, targeted strategy and random strategy. We
mainly investigate the equilibrium strategies when hA ¼ hD

and qA¼qD in random scale-free networks. The simulation
results show that there are two thresholds of q, denoted by q.1
and q.2. The equilibrium is (RAS, TDS) when q < q.1, which
means that the attacker attacks a set of targets randomly and
the defender protects the hub targets with large degrees pref-
erentially. When q > q.2, both players take random strategy.
Besides, they both adopt a mixed strategy when q.1 < q
< q.2. The influence of target networks on the equilibriums is
also investigated and explained, which indicates that the
larger average degree hki or degree exponent k are, the
smaller q.1 and q.2 are.

To the best of our knowledge, the game in this paper is
the first one to model the confrontations of the attacker and
defender from a network science perspective. It is rather
counterintuitive that the attacker virtually always attacks ran-
domly, but this result is confined to the framework where
only two strategies are considered. However, the problem of
defending critical infrastructures which are networks consid-
ering strategic attackers is far from being solved. A more
elaborate cost model which depicts more realistic features of
the system, larger strategy sets covering more strategies and
the sequence of player’s moves will be considered in our
future work. Moreover, in the real-world, complete informa-
tion about the target network is not always available for the
attacker, which inspires us to explore what the equilibriums
will be with incomplete information.
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