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A sampling-based multi-tree fusion
algorithm for frontier detection

Wenchuan Qiao1,2 , Zheng Fang1 and Bailu Si2,3

Abstract
Autonomous exploration is a key step toward real robotic autonomy. Among various approaches for autonomous
exploration, frontier-based methods are most commonly used. One efficient method of frontier detection exploits the
idea of the rapidly-exploring random tree and uses tree edges to search for frontiers. However, this method usually needs
to consume a lot of memory resources and searches for frontiers slowly in the environments where random trees are not
easy to grow (unfavorable environments). In this article, a sampling-based multi-tree fusion algorithm for frontier
detection is proposed. Firstly, the random tree’s growing and storage rules are changed so that the disadvantage of its
slow growing under unfavorable environments is overcome. Secondly, a block structure is proposed to judge whether
tree nodes in a block play a decisive role in frontier detection, so that a large number of redundant tree nodes can be
deleted. Finally, two random trees with different growing rules are fused to speed up frontier detection. Experimental
results in both simulated and real environments demonstrate that our algorithm for frontier detection consumes fewer
memory resources and shows better performances in unfavorable environments.
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Introduction

With the continuous development of robotic technologies,

robots, especially autonomous mobile robots, have been

integrated into more and more fields of human society,

which puts forward higher requirements for robotic auton-

omy. Autonomous exploration is a key step toward real

robotic autonomy. It could map the environment indepen-

dently and autonomously, which provides the basis for fur-

ther operations of robots. Autonomous exploration is a key

ability for many robots, such as inspection robot,1 rescue

robot,2 survey robot,3 and planet exploration robot.4 Among

various approaches for exploration, frontier-based methods5

are most commonly used. Frontier means the boundary

between the unknown area and the free area in the current

map. By continuously navigating to frontiers, the robot can

obtain more unknown environmental information with its

onboard sensors. However, most frontier detection methods

process the entire map data.6 When the environment to be

explored is large, the efficiency of those methods will reduce

significantly. Those methods would also become inefficient

in 3-D environments. To solve this problem, some
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researchers proposed exploration methods based on the

rapidly-exploring random tree (RRT).7 The RRT refers to

sampling randomly in a certain area and forming tree edges

and nodes through sampled points and their nearest valid tree

nodes. By doing this repeatedly, it can form an integrated

structure which is similar to a tree. At present, there are two

ways of exploration based on the RRT.

� Using the modified RRT to generate paths for explo-

ration,8,9 so that robots can complete the task of map-

ping an environment through moving along these

paths. However, due to the randomness of the tree’s

growing process, it will cause robots to explore the

same area many times and lose the advantage of max-

imizing the information gain through finding frontiers.

� Using the modified RRT to search for frontiers.10 The

idea is that if a tree edge falls on both the unknown area

and the free area at the same time, the unknown point

adjacent to the free area on this edge is a frontier point.

However, as exploration proceeds, more and more tree

nodes and edges need to be stored. A large number of

tree nodes and edges and the tree’s unrestrained grow-

ing will increase the memory burden and reduce the

efficiency and practicability of the algorithm. In addi-

tion, due to the tree’s slow growing in unfavorable

environments which often exist in reality (such as

floors containing many rooms and long corridors), the

robot may not find frontiers for a long time.

In this article, a sampling-based multi-tree fusion algo-

rithm (SMF) for frontier detection is proposed which also

uses the idea of the RRT.7 Firstly, we only maintain tree

nodes but abandon tree edges after using them for detecting

frontiers. At the same time, we allow the tree to grow across

obstacles, which overcomes the disadvantage of its slow

growing in unfavorable environments. Secondly, we propose

a block structure to judge whether tree nodes in a block play

a decisive role in frontier detection, so as to delete a large

number of redundant tree nodes generated during explora-

tion. This reduces memory consumption greatly. Finally, we

fuse a global exploration tree (global tree) which keeps

growing throughout exploration with a local exploration tree

(local tree) which regrows every time it finds a frontier point.

On one hand, we can make the global tree detect frontiers

faster because useful local tree nodes are fused into the

global tree. On the other hand, the global tree ensures that

frontiers in the map can all be found.10 The experiments

show that our SMF consumes fewer memory resources and

shows better performances in unfavorable environments.

Figure 1 shows the contrast between the proposed SMF and

the algorithm proposed by Umari and Mukhopadhyay10

(hereafter called rapidly-exploring frontier detector (RFD)).

In summary, the main contributions of this article are:

� A novel frontier detection method based on the RRT

is proposed, which can work well in unfavorable

environments where classical random trees are not

easy to grow.

� A block structure is proposed to identify the area

where important tree nodes are located and to delete

other redundant tree nodes, which can reduce mem-

ory consumption greatly.

� A global exploration tree (global tree) and a local

exploration tree (local tree) are fused to speed up

frontier detection.

� A lot of comparative experiments are carried out in

both simulated and real environments to verify the

effectiveness of our algorithm.

The rest of this article is organized as follows. In the

second section, we discuss related works. The third section

describes the proposed SMF. We validate performances of

our SMF in both simulated and real environments in the

fourth section and fifth section concludes the article.

Related works

Exploration means finding targets or paths so that robots

can perceive unknown environmental information and map

the whole environment in the constraint of time, path cost,

energy consumption, and so on. Connolly11 proposed the

Next Best View (NBV) problem in 1985. The location

where the most unknown scene information can be gained

by a sensor was chosen as the NBV. González-Baños and

Latombe12 introduced the safe region concept to select the

Figure 1. The upper part is a diagram of frontier detection using
SMF. The red and purple points respectively represent global tree
nodes and local tree nodes. The blue squares represent blocks. If
there is a yellow point at the center of a block, it means the
redundant global tree nodes in this block have been deleted. The
green and red edges respectively represent global tree edges and
local tree edges used to detect frontiers. The green points rep-
resent currently found frontier points. The lower part is a diagram
of frontier detection using RFD. The blue and purple tree struc-
ture respectively represent the global tree and the local tree. SMF:
sampling-based multi-tree fusion.

2 International Journal of Advanced Robotic Systems



next robot position in order to maximize the expected infor-

mation gain under the constraint that the local model at this new

position must have a minimal overlap with the current global

map. Vasquez-Gomez et al.13 came up with more complex and

sophisticated solutions of the NBV problem in 2014 by con-

sidering all the constraints of a reconstruction process.

Yamauchi5 first proposed the concept of the frontier in

1997, which can be seen as an adaptation of NBV.14 The

frontier means the boundary between the unknown area and

the free area in the current map. Edge detection in image

processing was used to search for frontiers and the center of

a frontier which was nearest to the robot would be regarded

as the next navigation target. After that, many frontier-

based exploration approaches have been used in single

robot exploration15–17 and multi-robot cooperative

exploration.18–22 However, edge detection used to search

for frontiers will become inefficient when the map it pro-

cesses is large. Keidar and Kaminka6 proposed two meth-

ods to alleviate this problem: wavefront frontier detector

(WFD) and fast frontier detector (FFD). WFD only detects

frontiers in the known area of the map, thus avoiding pro-

cessing the whole map. However, as exploration goes on,

the known area that needs to be processed will become

larger and larger. FFD processes sensor data every time it

is obtained to search for frontiers. However, only when the

robot obtains unknown environmental information, can

new frontiers be extracted effectively from sensor data.

Thus, it carries out many unnecessary calculations.

Frontier-based exploration approaches have also been

used for 3-D environments.14,23–25 Adler et al.23 created a

dense watertight 3-D model of the real-world environment

and the gaps which had remained throughout the mapping

process were chosen as navigation targets. However, this

method must establish a dense 3-D environmental model,

which would occupy much resources. Heng et al.24 used a

stereo camera to establish a 3-D octomap of the environment

and extracted frontiers from a 2-D slice of the 3-D octomap.

But this method can only find frontiers of the fixed height in

the 3-D octomap. Cieslewski et al.14 extracted frontiers by

finding free voxel grids neighboring unknown voxel grids in

the 3-D octomap of the environment and the goal frontier

was selected in a way that minimizes the change in velocity

necessary to reach it. But this method need to process the

whole 3-D octomap, which is computationally expensive

especially when the 3-D octomap is large.

In contrast to the above frontier-based approaches,

another way of exploration is to generate some candidate

viewpoints or movement paths and then use the evaluation

function to select the best one for perception. Sampling-

based information gathering approaches are proposed

based on this idea. Among them, methods based on the

RRT7 are popular. RRT is biased toward unexplored areas

and can quickly cover a large subset of the configuration

space, which makes it real-time capable even in 3-D envir-

onments.26 Oriolo et al.8 proposed the sensor-based random

tree (SRT) exploration method based on RRT in 2004,

which generated motion paths randomly in the safe area

around the robot until the robot finally explored all areas.

However, this method would generate a lot of unnecessary

robot movements, which would cause the revisiting prob-

lem. Thus, methods aiming at improving the efficiency of

SRT are proposed.27–29 Then, in 2017, Kim et al.30 pro-

posed a multi-robot cooperative exploration strategy based

on SRT. Bircher et al.9 used RRT to generate the most

informative robot motion paths. They grew a certain num-

ber of tree branches and selected the first edge of the tree

branch with the most unknown environmental information

as the robot motion path. By doing this repeatedly, the

robot can finally explore the whole environment. Due to

the good performance of RRT in 3-D environments, the

authors applied this method to the autonomous exploration

in 3-D environments by using a quad-rotor unmanned aerial

vehicle. Then, methods which also learn from the growing

mode of RRT to generate robot motion paths are pro-

posed.31–33 However, due to the randomness of RRT’s

growing process, these methods lose the advantage of max-

imizing the information gain through finding frontiers.

Some researchers34–37 try to combine frontier-based

methods with sampling-based methods to achieve better per-

formances. Meng et al.37 sampled viewpoints around fron-

tiers and used a Fixed Start Open Travelling Salesman

Problem (FSOTSP) solver to generate the optimal path pass-

ing through these viewpoints. Senarathne and Wang36

extracted surface frontiers from the 3-D map and then

sampled viewpoints around these surface frontiers. These

methods can reduce the randomness of sampling by firstly

extracting frontiers and then sampling around them. How-

ever, they all need an efficient algorithm for frontier detec-

tion especially in 3-D environments. In 2017, Umari and

Mukhopadhyay10 proposed the idea of detecting frontiers

by using RRT. However, this method would occupy a lot

of memory resources and the frontier detecting speed would

be slow in unfavorable environments.

The algorithm for frontier detection proposed in this arti-

cle is also based on the idea of RRT, but we fully realize the

difference between functions of RRT used in searching for

frontiers and in generating feasible robot motion paths. Thus

we change the growing and storage rules of RRT. We do not

save tree edges after using them for detecting frontiers. At

the same time, when newly grown nodes and edges fall in the

known area, even if they cross obstacles, we still regard these

tree nodes as valid and retain them. Because the growing

process of modified RRT does not need to avoid obstacles,

frontier detection is sped up in unfavorable environments.

Sampling-based multi-tree fusion
algorithm

Frontier detection using the modified RRT

As exploration goes on, more and more environmental

information is obtained through on-board sensors and the

Qiao et al. 3



environmental map Map would be constantly updated. The

map model used in this article is the occupancy grid map.

Map can be divided into the known area X known and the

unknown area X unknown. Meanwhile, X known can be divided

into the obstacle area X obstacle and the free area X f ree. The

frontier refers to the boundary between X unknown and X f ree

in Map.

In path planning, the growing process of the classical

RRT begins with a starting point (root node) xinit. First, xinit

is added to the valid tree node set V . Then, in each iteration,

a point xrand is sampled randomly from a given range and

the point xnearest in the valid tree node set V is found which

is nearest to xrand . If the distance between xnearest and xrand

is longer than the predefined step size h, it will generate a

new point xnew in the connecting line between xnearest and

xrand so that the distance between xnearest and xnew is fixed to

h. Otherwise, we regard xrand as xnew. Then, we grow a tree

edge from xnearest to xnew. If the tree edge falls on X f ree, xnew

is regarded as a valid tree node and is added to V . This tree

edge is also added to the valid tree edge set E. Otherwise,

xnew and the tree edge become invalid and we do not save

their information. By repeatedly doing the above operation,

it will constantly form an integrated structure similar to a

tree, as shown in Figure 2.

In autonomous exploration, the idea of using RRT to

search for frontiers is that if the tree edge falls on

X unknown and X f ree at the same time, the unknown point

adjacent to X f ree on this edge is a frontier point, as shown

in Figure 3. You can see that there is no frontier point on the

edge if X obstacle is adjacent to X unknown. Here, the search

tree’s growing process is the same as the classical RRT’s

but invalid tree nodes and edges mean that they will be

deleted after being used to search for frontiers.

However, we realize that the RRT in autonomous explo-

ration is not used to generate feasible robot motion paths, it

is only used to search for frontiers. Therefore, we change

the tree’s growing and storage rules, as shown in Figure 4.

We abandon all tree edges after using them to detect fron-

tiers but only preserve tree nodes. In addition, because the

search tree’s growing doesn’t need to avoid obstacles, xnew

is still regarded as valid and is added to V if its edge falls in

X known but crosses X obstacle. By doing this, we speed up

frontier detection in unfavorable environments.

Block structure

Although we speed up the growing process of the RRT

by changing the tree’s growing and storage rules, the

number of tree nodes to be stored is still not effectively

controlled. As time goes on, it will increase unbounded

and the tree’s growing will become slower and slower.

Thus, exploration cannot be done well especially in

large-scale and 3-D environments.

We can find that the frontier detecting process using the

RRT is similar to the propagation of water waves. This is

because the random tree grows from the initial root node

xinit and then expands to the surrounding unexplored area to

search for frontiers. In order to explore areas where undis-

covered frontiers may exist (unexplored areas), the external

tree nodes surrounding other tree nodes play an important

role. This is because one of them tends to be the xnearest of

the xrand which is located in the unexplored areas and can

generate xnew outward, as shown in Figure 5. On the con-

trary, internal tree nodes surrounded by external tree nodes

do not have much effect on expanding the tree outward and

thus become redundant. In Figure 5, the outermost blue

nodes with curves of outward arrows represent the external

tree nodes which can be chosen as xnearest to expand the tree

in the approximate direction of the arrow. The yellow

Figure 2. The diagram of the growing process of the classical
RRT in path planning. RRT: rapidly-exploring random tree.

Figure 3. The diagram of the frontier detecting process using the
classical RRT. RRT: rapidly-exploring random tree.

Figure 4. The diagram of the frontier detecting process using our
modified RRT. RRT: rapidly-exploring random tree.
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points represent the redundant internal tree nodes which

can be deleted to save memory resources.

In order to identify external and internal tree nodes and

delete redundant internal tree nodes, we propose a block

structure which divides the map into square blocks of the

same size, as shown in Figure 6. Valid tree nodes will fall

in these blocks. If a block contains sufficient number

(verticesmin) of tree nodes which can be used to grow new

tree nodes efficiently, we call this block Blockmature. If there

is a block which is located in X known and each of the four

blocks adjacent to this block is Blockmature, we categorize it

as Blockinternal, as indicated by the A block in Figure 6(a)

(here we assume verticesmin ¼ 2). In addition, if there is a

block which is located in X known and each of the four blocks

adjacent to it is either Blockmature or Blockinternal, this block

also is categorized as Blockinternal, as indicated by the B block

in Figure 6(b). By contrast, if a block is not Blockinternal, it is

categorized as Blockexternal. Thus, we can classify all blocks

into two categories: Blockinternal and Blockexternal. The tree

nodes in Blockinternal are redundant internal tree nodes which

can be deleted and the tree nodes in Blockexternal are impor-

tant external tree nodes for frontier detection. Thus, we will

delete all tree nodes in Blockinternal to save memory

resources. In addition, because Blockinternal is located in

X known, which means there are no frontiers in it, we do not

sample xrand and generate xnew in it to reduce unnecessary

sampling, growing, and detection. This will speed up the

tree’s growing process and the frontier detecting process.

As mentioned above, we delete the tree nodes in

Blockinternal to reduce memory consumption. But we also

need to control the maximum number of tree nodes in

Blockexternal so that the number of tree nodes which are

needed to be stored in whole exploration can be controlled

within a certain range. We can see that if the number of tree

nodes in Blockexternal reaches verticesmax (verticesmax >

verticesmin), only partial tree nodes in it are needed to grow

new tree nodes and we will delete numberdelete tree nodes in

it, as shown in Figure 7. In addition, because valid tree

nodes all exist in X known, when the number of valid tree

nodes in Blockexternal reaches verticesmax, this block is

likely to be located in X known, which means that there are

no frontiers in it. Therefore, if the number of tree nodes in

Blockexternal reaches verticesmax, we will judge whether

Blockexternal is located in X known at the same time. If

Blockexternal is located in X known, we will not only delete

numberdelete tree nodes in it but also do not sample xrand and

grow xnew in it. Otherwise, only numberdelete tree nodes in it

is deleted but we still can sample xrand and grow xnew in it. If

the number of tree nodes in it reaches verticesmax again, we

will continue to handle it according to the above rules.

Figure 5. Only blue external tree nodes are needed to search for
frontiers and yellow internal tree nodes become redundant.

Figure 6. Blocks are categorized into two categories: Blockinternal

and Blockexternal . (a) The first case in which Blockexternal is converted
to Blockinternal like the A block. (b) The second case in which
Blockexternal is converted to Blockinternal like the B block.

Figure 7. When the number of tree nodes in Blockexternal reaches
verticesmax , partial tree nodes can be deleted.
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In this article, we divide the map area into numberblock

square blocks whose side lengths are all resolutionblock . If

the map to be explored is approximated as a rectangle whose

length is xmap and width is ymap, numberblock can be calcu-

lated by formula (1). The map model used in this article is

the occupancy grid map. Each block contains numbercell

grid cells which can be calculated by formula (2). Thus,

whether a block is located in X known or not can be judged

by current map information about grid cells’ state (free,

unknown, or occupied). When exploration is accomplished,

numbervertices will converge to a fixed proportion of the

perimeter L of the known environmental map (containing

no unknown area), which can be calculated by formula (3)

numberblock ¼ dxmap=resolutionblocke
�dymap=resolutionblocke ð1Þ

numbercell ¼ dresolutionblock=resolutionmape2 ð2Þ

ðverticesmax � numberdeleteÞ � dLOresolutionblocke
8 numbervertices 8 verticesmax � dLOresolutionblocke

ð3Þ

Multi-tree fusion

In RFD algorithm,10 the global tree and the local tree are

growing independently. The global tree keeps growing

throughout the whole exploration. The local tree removes

all its tree nodes and edges every time it finds a frontier

point and then regrows from the current robot position. As

we mentioned before, when the tree grows xnew, it needs to

search for xnearest in the valid tree node set V . When the

number of valid tree nodes is large, xnearest would be found

slowly and the tree would grow slowly, which could slow

down frontier detection. After long-time growing, espe-

cially in large-scale and 3-D environments, the global tree

grows slower and slower because the number of its tree

nodes becomes larger and larger, but it can make sure that

all frontiers in the map can be found.10 By contrast, the

number of local tree nodes keeps small because the local

tree regrows every time it finds a frontier point, and thus it

grows fast. In addition, because the local tree regrows from

the current robot position where the robot may obtain new

environmental information, it could search for frontiers

which are near to the robot or just created by new obtained

environmental information faster than the global tree does.

However, the authors did not bring the advantage of the

local tree into the global tree. In this article, the growing

and storage rules of both global and local trees are chan-

ged according to the “Frontier detection using the modi-

fied RRT” subsection of this section. The redundant

global tree nodes are deleted according to “Block

structure” subsection of this section. Because the number

of local tree nodes is small, we do not delete local tree

nodes until it finds a frontier point. We fuse useful local

tree node xlocal which is located in Blockexternal into the

valid tree node set V of the global tree, as shown in

Figure 8. This can speed up the useful outgrowing of the

global tree for frontier detection. In addition, because

fused local tree nodes have become a part of global tree

nodes and the global tree obeys the block rules, some

blocks surrounded by them could turn into Blockinternal

and redundant global tree nodes in Blockinternal can be

deleted, as shown in Figure 8.

Implementation details

Global tree algorithm. The global tree algorithm proposed in

this article is shown in algorithm 1. The global tree keeps

growing throughout the whole exploration and searches for

frontiers using the modified RRT. At the same time, the block

structure is used to delete redundant global tree nodes and

local tree nodes are fused into the global tree to speed up the

useful outgrowing of the global tree for frontier detection.

In the global tree algorithm, we first need to initialize

blocks’ flags and attribute values using the function

BlockInitialðxmap; ymap; resolutionblockÞ. The DeleteFlagx

represents that whether the block where the tree node x is

located is Blockinternal. The Verticesx represents the number

of tree nodes in the block where the tree node x is located.

The MatureFlagx represents that whether the block where

the tree node x is located is Blockmature. The attribute value

MatureNeighbor of a block represents the number of

Blockmature that is adjacent to this block. Then, frontier

detection and the deletion of redundant tree nodes are

carried out. The function SampleðÞ indicates sampling

xrand randomly in a certain range. The function

NearestðV ; xrandÞ indicates finding the nearest valid tree

node xnearest to xrand . The function Steerðxnearest; xrand ; hÞ
indicates generating xnew under the constraints of step size

h. The function FindFrontierðmap; xnearest; xnewÞ ¼ 1 indi-

cates that there is a frontier point on the tree edge between

xnearest and xnew. The function FindFrontierðmap;

Figure 8. The diagram of fusing purple local tree nodes in
Blockexternal into the global tree.
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xnearest; xnewÞ ¼ 0 indicates that the tree edge is located in

X known. The function OperationBlockðxÞ indicates that the

valid tree node x will be used to delete redundant tree nodes

according to the block rules, as shown in algorithm 2.

Finally, local tree nodes in Blockexternal are fused into the

set V of the global tree.

Local tree algorithm. The local tree algorithm proposed in

this article is shown in algorithm 3. After finding a frontier

or growing long enough, the local tree deletes all tree nodes

for reset and starts to grow again from the current robot

position. The local tree searches for frontiers using the

modified RRT but does not obey the same block rules

as the global tree does. The meaning of SampleðÞ,
NearestðV ; xrandÞ, Steerðxnearest; xrand ; hÞ, FindFrontier

ðmap; xnearest; xnewÞ ¼ 1, and FindFrontierðmap; xnearest;
xnewÞ ¼ 0 are the same as that of the global tree algorithm.

Analysis of parameter value. In the global tree, there are

five important parameters: h, resolutionblock , verticesmin,

verticesmax, and numberdelete. These five parameters will

have a certain effect on the performance of our algorithm.

As mentioned in the classification of blocks, only when

each of the four blocks adjacent to a block contains suffi-

cient number of tree nodes, this block has the chance to

become Blockinternal and redundant internal tree nodes in it

can be deleted. Meanwhile, when resolutionblock is equal to

h, xnew tends to be located in the block which is adjacent to

the block where xnearest is located, so that redundant internal

tree nodes can be deleted as quickly as possible. Thus, we

recommend that the value of resolutionblock should equal to

the value of h. Then, the value of h could be selected

according to the complexity of the environment. The more

complex the environment is, the smaller value of h should

be. The minimum value of verticesmin can be calculated by

resolutionblock=h. But if the value of verticesmin is too

small, it will cause that too few tree nodes in the block can

be used to grow new tree nodes. Though this can speed up

the deletion of redundant tree nodes, it slows down frontier

detection. In contrast, if the value of verticesmin is too large,

the tree nodes used to grow new ones are sufficient but the

deletion of redundant tree nodes will be slowed down.

Therefore, the appropriate value of verticesmin should be

Algorithm 1. Global exploration tree. Algorithm 2. OperationBlockðxÞ.

Algorithm 3. Local exploration tree.

Qiao et al. 7



selected based on the complexity of the environment and

the value of resolutionblock (the more complex the environ-

ment is and the greater value of resolutionblock is, the larger

value of verticesmin should be), so as to speed up the dele-

tion of redundant tree nodes without affecting frontier

detection. In addition, the greater the value of verticesmax

is, the higher the tree node density in a block could be.

Though this can be beneficial to grow new tree nodes out-

ward and the probability of this block to be located in

X known will be bigger, the more memory resources will be

consumed. Therefore, the appropriate value of verticesmax

also should be selected based on the complexity of the

environment and the value of resolutionblock (the more

complex the environment is and the greater value of

resolutionblock is, the larger value of verticesmax should

be), so that the number of tree nodes to be stored is less

without affecting frontier detection. In this article, we set

verticesmax double of verticesmin. Finally, when the num-

ber of tree nodes in a block reaches verticesmax and

numberdelete tree nodes in it are deleted, there should still

be enough tree nodes in it to grow new ones. And

verticesmin exactly represents the number of sufficient tree

nodes used to grow new tree nodes. Therefore, we get

that numberdelete 8 verticesmax � verticesmin. In this arti-

cle, we set numberdelete ¼ verticesmax� verticesmin ¼ 2�
verticesmin � verticesmin ¼ verticesmin.

Experiments and results

In order to verify performances of our SMF algorithm for

frontier detection, we compare it with the frontier detection

algorithm based on the classical RRT (RFD).10 Our experi-

ment video can be found at https://youtu.be/ck-srMisCis.

For fair comparison with RFD, we use the same filter mod-

ule, task allocation module, path planning module, and

simultaneous localization and mapping (SLAM) module

as used by RFD.10 The proposed frontier detection algo-

rithm itself is used as the frontier detection module. The

frontier detection module is used to find frontier points in

the map, the filter module is used to unify the adjacent

frontier points into a central frontier point, the task alloca-

tion module is used to determine which frontier point

should be assigned to the robot as the navigation target,

the path planning module is used to find the feasible motion

path to the designated navigation target, and the SLAM

module is used to locate the robot and map the environment

simultaneously during exploration. The above five modules

constitute the whole robot exploration system, as shown in

Figure 9, and each module can be modified individually to

achieve better exploration performances.10 For specific

details, please refer to their paper10

Experiments in simulation environments

In this article, gazebo is used to simulate robot exploration

of unknown environments. Two simulation environments

are built. The first simulation environment is about 300 m2,

as shown in Figure 10. Figures 11 and 12 respectively

represent the occupancy grid map model of Figure 10 using

proposed SMF and RFD. The second simulation environ-

ment is about 240 m2, as shown in Figure 13. Figures 14

and 15 respectively represent the occupancy grid map

model of Figure 13 using proposed SMF and RFD. The

radius of the robot is 0.175 m. The maximum linear velocity

of robot is 0.3 m/s. The maximum linear acceleration of robot

is 0.05 m/s2. The laser’s scanning angle is 240� and its max-

imum detection range is 60 m. In Figures 11 and 14, the red

points represent global tree nodes and the purple points rep-

resent local tree nodes. If there is a yellow point at the center

of a block, it means that this block is Blockinternal and redun-

dant global tree nodes in it have been deleted. In Figures 12

and 15, the blue tree structure represents the global tree and

the purple tree structure represents the local tree.

In simulation experiments, the global tree’s step length h
in both our SMF and RFD is set to 1, 2, 4, 6, 10 m. Mean-

while, verticesmin in our SMF is set to 2, 2, 4, 6, 8 corre-

sponding to each h (1, 2, 4, 6, 10 m). The local tree’s step

length in both our SMF and RFD is fixed to 1 m. In each

simulation environment, we carry out 10 experiments for

each global tree’s step length using proposed SMF and

Figure 9. The diagram of the whole robot exploration system.

Figure 10. The first simulation environment.
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RFD. The total number of experiments in each simulation

environment is 100. The mean exploration time is drawn as

histograms, as shown in Figures 16 and 17. Because the

local tree will regrow after finding a frontier point or a short

period of time, it generates few tree nodes and edges and

consumes little memory resources which is ignored in this

article. We record the number of global tree nodes gener-

ated by proposed SMF and RFD at some time points

and make them into connection diagrams, as shown in Fig-

ures 18 and 19.

Figure 11. The occupancy grid map model of the first simulation
environment after exploration using proposed SMF. SMF:
sampling-based multi-tree fusion.

Figure 12. The occupancy grid map model of the first simulation
environment after exploration using RFD.

Figure 13. The second simulation environment.

Figure 14. The occupancy grid map model of the second simu-
lation environment after exploration using proposed SMF. SMF:
sampling-based multi-tree fusion.

Figure 15. The occupancy grid map model of the second simu-
lation environment after exploration using RFD.

Qiao et al. 9



Experiments in the real environment

In this article, a real environment was built with an area of

about 170 m2, as shown in Figure 20. Figures 21 and 22

respectively represent the occupancy grid map model of

Figure 20 using proposed SMF and RFD. The Turtlebot 2

is used as the mobile platform. The radius of the robot is

about 0.25 m. The maximum linear velocity of robot is set

to 0.65 m/s. The maximum linear acceleration of robot is

set to 0.06 m/s2. A Lenovo 80Q4 laptop is used to process

data and a Hokuyo UTM-30LX is used to perceive envi-

ronmental information. The laser’s scanning angle is set to

180� and its maximum detection range is 30 m. In Figure

21, the red points represent global tree nodes and the purple

points represent local tree nodes. In Figure 22, the blue tree

structure represents the global tree and the purple tree struc-

ture represents the local tree.

In real experiments, the global tree’s step length h in

both our SMF and RFD is set to 1, 2, 3, 4 m. Meanwhile,

verticesmin in our SMF is set to 2, 2, 3, 4 corresponding to

each h (1, 2, 3, 4 m). The local tree’s step length in both our

SMF and RFD is fixed to 1 m. In the real environment, we

carry out 10 experiments for each global tree’s step length

using proposed SMF and RFD. The total number of

Figure 16. The time contrast histogram of SMF and RFD in the
first simulation environment. SMF: sampling-based multi-tree
fusion.

Figure 17. The time contrast histogram of SMF and RFD in the
second simulation environment. SMF: sampling-based multi-tree
fusion.

Figure 18. The line chart of the number of tree nodes generated
by SMF and RFD in the first simulation environment. SMF:
sampling-based multi-tree fusion.

Figure 19. The line chart of the number of tree nodes generated
by SMF and RFD in the second simulation environment.
SMF: sampling-based multi-tree fusion.
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experiments in the real environment is 80. The mean explo-

ration time is drawn as histograms, as shown in Figure 23.

Because the local tree will regrow after finding a frontier or

a short period of time, it generates few tree nodes and edges

and consumes little memory resources which is ignored in

this article. We record the numbers of global tree nodes

generated by proposed SMF and RFD at some time points

and make them into connection diagrams, as shown

in Figure 24.

Results analysis

As we can see from Figures 14, 19, and 24, the number of

tree nodes needed to be stored in SMF converges to the

range of formula (3), while the number of tree nodes

needed to be stored in RFD increases linearly with time.

Under the selected parameters, the number of tree nodes in

SMF converges to less than 200 while it can reach more

than 10,000 in RFD in the first simulation environment.

The number of tree nodes in SMF converges to less than

150 while it can reach more than 12,000 in RFD in the

second simulation environment. The number of tree nodes

in SMF converges to less than 200 points while it can reach

more than 1500 points in RFD in the real environment.

Therefore, compared with RFD, our SMF greatly reduces

the number of tree nodes needed to be stored during

Figure 20. The real environment.

Figure 21. The occupancy grid map model of the real environ-
ment after exploration using proposed SMF. SMF: sampling-based
multi-tree fusion.

Figure 22. The occupancy grid map model of the real environ-
ment after exploration using RFD.
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Figure 23. The time contrast histogram of SMF and RFD in the
real environment. SMF: sampling-based multi-tree fusion.
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exploration, thus reducing memory consumption. As we

can see from Figures 13, 18, and 23, our SMF spent about

the same amount of time for exploration as RFD did in the

first simulation environment and the real environment. But

in the second simulation environment, the time our SMF

spent in exploration was reduced to about half the time RFD

spent. This is because that the classical RRT grows slowly in

the second simulation environment (unfavorable environ-

ment), which causes long-time failure to find frontiers in the

map. By contrast, we change the random tree’s growing and

storage rules to overcome the disadvantage of its slow grow-

ing under unfavorable environments. In a word, our SMF

greatly reduces memory consumption without affecting its

performance. In unfavorable environments, our SMF can

show a better performance than RFD does and only con-

sumes little memory resources at the same time.

Conclusion

In this article, an SMF algorithm for frontier detection is

proposed. Firstly, we allow the RRT to grow across

obstacles in known area to overcome its slow growing in

unfavorable environments. Secondly, we put forward a

block structure and classify blocks into two categorizes

(Blockinternal and Blockexternal) to delete redundant tree

nodes, which greatly reduces memory consumption.

Finally, we fuse the local tree nodes into the global tree

to speed up frontier detection. The experimental results

show that proposed SMF consumes little memory

resources and shows a better performance in unfavorable

environments.

In the future, we will focus on expanding our algorithm

from 2-D environments to 3-D environments and improv-

ing task allocation module and path planning module to

obtain better exploration performances.
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